Akustisches Diskriminierungslernen bei der Mongolischen Wüstenrennmaus: Proteinsyntheseabhängigkeit und Veränderungen der Genexpression im Hörkortex

DISSERTATION

Zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr.rer.nat.)

genehmigt durch
die Fakultät für Naturwissenschaften
der Otto-von-Guericke-Universität Magdeburg

von Michaela Kraus

geb. am 29.07.1972 in Leinefelde

Gutachter: Prof. Dr. E.D. Gundelfinger
Prof. Dr. H. Schwegler
Prof. Dr. G. Ehret

Eingereicht am: 26.6.02
Verteidigung am: 18.12.02
Danksagung

Die vorliegende Arbeit wurde am Institut für Neurobiologie in Magdeburg angefertigt.

An erster Stelle möchte ich mich besonders bei Dr. Wolfgang Tischmeyer für seine Betreuung, sein Interesse und ständige Diskussionsbereitschaft bedanken- besonders dann, wenn mal wieder nichts funktionierte.

Prof. Eckart Gundelfinger danke ich für die Arbeitsmöglichkeit in der Abteilung Neurochemie/Molekularbiologie, für seine Unterstützung und dem Interesse am Fortgang der Arbeit.

Mein Dank gilt Dr. Horst Schicknick, ohne den ein Teil meiner Arbeit, insbesondere die Rapamycin-Experimente, überhaupt nicht möglich gewesen wäre. Lydia Löw und Chris Leusche bin ich für die Hilfe bei den Lernexperimenten dankbar.

Sabine Staak möchte ich für ihre Hilfe und die aufmerksame Durchsicht des Manuskriptes während des Endspurts meiner Arbeit danken.

Katrin Schumacher danke ich für die vielen Stunden, die sie aufwendete für die Anfertigung der Gefrierschnitte.

PD Dr. Dirk Montag danke ich für die Bereitstellung der Arc-Sonde und den vielen hilfreichen Tipps und Tricks für die in situ Hybridisierung. Dr. Monique Montag-Sallaz möchte ich sehr danken, da sie mir mit viel Geduld und Hilfe bei meinen ersten in situ Hybridisierungen zur Seite gestanden hat.

Dr. Rainer Pielot möchte ich dafür danken, dass er immer wieder bei den vielen großen und kleinen Problem mit dem Computer geholfen hat.

Mein herzlicher Dank gilt allen Mitarbeitern der Abteilung Neurochemie/Molekularbiologie und den Neurogenetikern für die Hilfsbereitschaft und die gute Stimmung die einen wesentlichen Anteil am Gelingen dieser Arbeit hatte.

Inhaltsverzeichnis

1. **EINLEITUNG** ... 1

1.1. **Lernen und Gedächtnis** ... 1

1.1.1. Definition von Lernen und Gedächtnis .. 1

1.1.2. Gedächtnisformen- und modelle ... 1

1.1.3. Die Bildung eines Kurzzeitgedächtnisses .. 2

1.1.4. Die Bildung eines Langzeitgedächtnisses ... 3

1.2. **Der auditorische Kortex der Mongolischen Wüstenrennmaus**... 7

1.3. **Zielstellung** ... 10

2. **MATERIAL UND METHODEN** ... 11

2.1. **Verhaltensexperimente** ... 11

2.1.1. Tiermaterial .. 11

2.1.2. Lernparadigma .. 11

2.1.3. Intrakortikale Injektionen ... 13

2.1.3.1. Operative Eingriffe .. 13

2.1.3.2. Substanzapplikationen .. 13

2.2. **Analysen zur Veränderung der Genexpression nach FM-Diskriminierungstraining** 16

2.2.1. Chemikalien ... 16

2.2.2. Kits und Enzyme ... 16

2.2.3. Vektoren... 17

2.2.4. Bakterienstamm.. 17

2.2.5. Allgemeine Lösungen .. 17

2.2.6. Krampfauslösende Stimulation mit Kainat .. 17

2.2.7. Präparation verschiedener Hirnregionen des Gerbils .. 17

2.2.8. Isolierung von Gesamt-RNA .. 18

2.2.9. Subtraktive Hybridisierung ... 19

2.2.9.1. cDNA-Synthese .. 19

2.2.9.2. Subtraktive Hybridisierung ... 21

2.2.10. Charakterisierung der erhaltenen Klone ... 24
3. **ERGEBNISSE**

3.1. Einfluss von Proteinsyntheseinhibitoren auf das FM-Diskriminierungsverhalten

3.1.1. Methodische Vorarbeiten für die pharmakologischen Studien

3.1.1.1. FM-Diskriminierungslernen bei unbehandelten Gerbils

3.1.1.2. Einfluss von Operation und Narkose auf die Diskriminierungsleistung

3.1.1.3. Sensitivität der Diskriminierungsreaktion gegenüber unilateral rechts verabreichtem ANI

3.1.2. Injektion von ANI oder EME in den AC des Gerbils

3.1.2.1. Injektion von ANI 5 min und 2 h nach dem initialen Training
Inhaltsverzeichnis

3.1.2.2. Injektion von ANI 4 h und 6 h nach dem initialen Training .. 47
3.1.2.3. Einfluss von ANI auf eine vollständig etablierte FM-Diskriminierungsreaktion 48
3.1.2.4. Einfluss von ANI auf eine partiell etablierte FM-Diskriminierungsreaktion 49
3.1.2.5. Einfluss von EME auf eine partiell etablierte FM-Diskriminierungsreaktion 50
3.1.2.6. Injektion von ANI oder EME mehrere Tage vor dem initialen Training .. 52
3.1.2.7. Zusammenfassung der Wirkung von bilateral in den AC applizierten Proteinsyntheseinhibitoren .. 53

3.1.3. Injektion von RAPA und FK506 in den AC des Gerbils .. 54
3.1.4. Zusammenfassung der Effekte bilateraler Injektionen in den AC des Gerbils 57

3.2. Analysen zur Veränderung der Genexpression nach FM-Diskriminierungstraining

3.2.1. Analyse von Arc (Arg3.1)-mRNA mittels in situ-Hybridisierung .. 59
3.2.2. Subtraktive Hybridisierung .. 61
3.2.3. Dot-Blot-Hybridisierung und Identifizierung nicht-mitochondrialer DNA 62
3.2.4. Analyse durch Northern-Blot-Hybridisierung .. 66
3.2.5. Analyse durch nicht-radioaktive in situ-Hybridisierung ... 69
 3.2.5.1. VILIP-1 in situ-Hybridisierung .. 69
 3.2.5.2. Nurr1/Nurr2 in situ-Hybridisierung ... 72
 3.2.5.3. Ermittlung der Neuronendichte im AC des Gerbils .. 74

4. Diskussion

4.1. Pharmakologische Untersuchungen zu Proteinsynthese-abhängigen Prozessen im auditorischen Kortex der Mongolischen Wüstenrennmaus im Zusammenhang mit FM-Diskriminierungslernen .. 76
 4.1.1. Einfluss von Operation, Narkose und Injektionsprozedur auf die Diskriminierungsleistung 76
 4.1.2. Injektionen von Anisomycin und Emetin ... 77
 4.1.3. Injektion von Rapamycin und FK506 .. 82

4.2. Veränderungen in der Genexpression nach FM-Diskriminierungstraining ... 86
 4.2.1. Erhöhte Expression von Arc (Arg3.1)-mRNA nach FM-Diskriminierungstraining 86
 4.2.2. Subtraktive Hybridisierung zur Detektion differentiell exprimierter Gene 87
 4.2.3. Veränderungen der Genexpression nach FM-Diskriminierungstraining und Stimulation mit Kainat ... 89
4.2.3.1. Northern-Blot-Hybridisierung ... 89
4.2.3.2. Nicht-radioaktive in situ-Hybridisierung .. 90

4.3. Zusammenfassung und Ausblick ... 92

5. ZUSAMMENFASSUNG ... 94

6. LITERATURVERZEICHNIS ... 95

7. ABKÜRZUNGEN ... 107
1. Einleitung

1.1. Lernen und Gedächtnis

1.1.1. Definition von Lernen und Gedächtnis

1.1.2. Gedächtnisformen- und modelle

Beide Gedächtnisformen lassen sich in mindestens zwei zeitliche Komponenten unterteilen: das Kurzzeitgedächtnis, das zwischen wenigen Minuten bis zu einigen Stunden anhält und das Langzeitgedächtnis, welches persistent für einige Tage, Jahre oder ein ganzes Leben ist (Barondes und Cohen, 1968; Goelet *et al.*, 1986; McGaugh, 2000).

1.1.3. **Die Bildung eines Kurzzeitgedächtnisses**

1.1.4. Die Bildung eines Langzeitgedächtnisses

Verschiedene Autoren beschreiben, dass einige Behandlungen, welche die Konsolidierung eines Gedächtnisses vermindern, auch die Stabilität eines Gedächtnisses nach der Abrufung beeinträchtigen. Es zeigte sich, dass die Stabilität des reaktivierten Gedächtnisses beeinträchtigt sein kann, wenn in zeitlicher Nähe zur Abrufung eines Gedächtnisses Inhibitoren der Proteinsynthese (Judge und Quartermain, 1982; Nader et al., 2000; Taubenfeld et al., 2001), elektrokonvulsiver Schock (Misanin et al., 1968), Hypothermie (Mactutus et al., 1979), glutamaterge und β-adrenerge Antagonisten (Summers et al., 1997; Przybyslawski et al., 1999) verabreicht werden. Es wird vermutet, dass, wenn Gedächtnisinhalte abgerufen werden, um z. B. neue Erfahrungen hinzuzufügen, eine labile Phase eintritt und Prozesse der Rekonsolidierung benötigt werden, die den Mechanismen der Konsolidierung nach Akquisition ähnlich sind (Übersicht siehe Sara, 2000).
Es wurde gezeigt, dass Proteinsyntheseinhibitoren sowohl die Ausbildung eines Langzeitgedächtnisses als auch die Stabilität eines reaktivierten Gedächtnisses bein trächtigen können. Zwei häufig in der Lernforschung verwendete Inhibitoren der Proteinsynthese sind Anisomycin (ANI) und Emetin (EME) (Davis und Squire, 1984). Beide Substanzen hemmen die Elongation der Translation, greifen aber in unterschiedliche Schritte der Polypeptidketten-Verlängerung ein und unterdrücken so die Translation der Gesamtheit eukaryotischer mRNA (Huang und Grollman, 1970).

Verschiedene neurotrophe Faktoren (*nerve growth factor*, *brain derived neurotrophic factor* [BDNF], Neurotrophin-3, -4 und -6), welche das Überleben und die Differenzierung von Neuronen während der Entwicklung regulieren, können ebenfalls sehr schnell in Paradigmen von synaptischer Plastizität, wie z. B. das durch Läsionen induzierte Auswachsen neuer Verbindungen, Induktion einer LTP und räumliches Lernen induziert werden (Übersicht siehe Thoenen, 1995).

Es gibt bisher relativ wenige Untersuchungen zu Veränderungen auf mRNA- oder Proteinebene 4 – 6 Stunden oder zu noch späteren Zeitpunkten nach einem Lernvorgang. Gene, die in der zweiten Phase erhöht exprimiert werden, bezeichnet man auch als *late genes*. Zu den Genen oder Proteinen, die bisher zu späten Zeitpunkten nach einem Training oder einer Konditionierung als in ihrer Expression verändert identifiziert wurden, gehören Glykoproteine, z. B. NCAM, L1, Neuroligin1 (Rose, 2000; Stork et al., 2001), Proteine des Zytoskeletts, z. B. Aktin, MARCKS (Hatada et al., 2000; Matus, 2000), Bestandteile von Rezeptoren (AMPA-, NMDA- [Untereinheit NR2B], Ryanodin- [Typ 2] und Serotonin-Rezeptor Nayak et al., 1998; Williams et al., 1998), Ca²⁺-bindende Proteine, z. B. Calreticulin, Neurocalcin δ (Kennedy et al., 1992; Stork et al., 2001), Komponenten der Endozytose und Exozytose, z. B. Clathrin leichte und schwere Kette, Syntaxin 1B und Synapsin I (Hicks et al., 1997; Stork und Welzl, 1999), aber auch die Haushaltsenzyme Glutamat-Dehydrogenase, Aldehyd-Reduktase, Phosphofructokinase (Cavallaro et al., 1997; Stork et al., 2001) sowie Komponenten verschiedener Signaltransduktionswege und Proteine für strukturelle Reorganisationsprozesse (Stork et al., 2001). Die Proteinprodukte dieser Gene könnten zur funktionellen und strukturellen Reorganisation von Synapsen und Neuronen beitragen.
1.2. Der auditorische Kortex der Mongolischen Wüstenrennmaus

Die Mongolische Wüstenrennmaus (*Meriones unguiculatus*, Mongolischer Gerbil) wurde in den letzten Jahren zu einem wichtigen Tiermodell für die Erforschung des auditorischen Systems, seiner Physiologie sowie möglicher plasticer Veränderungen. Einer der wichtigsten Gründe hierfür ist, dass die Hörschwellekurve des Gerbils im niederfrequenten Bereich der des Menschen sehr ähnlich ist (Ryan, 1976), was sich auch in der deutlichen Repräsentation von niedrigen Frequenzen in den unterschiedlichen Strukturen der Hörbahn widerspiegelt (Ryan et al., 1982).

Unterschiedlichste Hinweise für mögliche lerninduzierte Prozesse im AC nach aversiver Ton konditionierung wurden bereits beschrieben. Physiologische Korrelate für lerninduzierte

Für das IEG c-fos konnte nach kurzer Stimulation mit reinen Tönen eine spezifische Expression in AI, sichtbar durch ein sehr schmales Band c-Fos-immunpositiver Zellen, besonders stark in den Schichten II und IV, detektiert werden. Durch Vergleich mit 2DG-Mustern benachbarter Hirnabschnitte wurde nachgewiesen, dass die Expression von c-fos zu Isofrequenzlinien korrespondiert und es sich somit wahrscheinlich um frequenzspezifische Aktivierungen handelt (Scheich und Zschratr, 1995; Zschratr et al., 1995).

Einleitung

Zusammenfassend weisen die Befunde darauf hin, dass der AC des Gerbils eine kritische Rolle für die Diskriminierung der Modulationsrichtung von FMs spielt. Es bleibt die Frage offen, ob sich diese Rolle auf sensorische Mechanismen der FM-Verarbeitung beschränkt oder ob der AC auch in Aspekte des Lernens und der Gedächtnisbildung involviert ist. Über zelluläre und molekulare Vorgänge im AC des Gerbils oder auch anderer Mammalia nach Erwerb einer FM-Diskriminierungsreaktion ist bislang nichts bekannt.
1.3. Zielstellung

Phänomene neuronaler Plastizität im Rahmen der Langzeitgedächtnisbildung sind an Änderungen der Genexpression auf Ebene der Transkription und/oder Translation involvierter Neuronen gebunden. Bisherige Studien am auditorischen Kortex des Gerbils weisen auf eine Schlüsselstellung dieser Hirnregion für das Erlernen einer Reaktion zur Diskriminierung der Modulationsrichtung frequenzmodulierter Töne hin. Als Beitrag zur Klärung der Frage, ob die Bedeutung des auditorischen Kortex für FM-Diskriminierungslernen sich in rein sensorischen Phänomenen der FM-Verarbeitung erschöpft oder aber Aspekte des Lernens und der Gedächtnisbildung beinhaltet, wurde die vorliegende Arbeit mit den folgenden Fragestellungen vorgenommen:

1. Ist die Ausbildung eines Langzeitgedächtnisses für die FM-Diskriminierungsreaktion des Gerbils sensitiv gegenüber der Gabe von Proteinsynthesehemmstoffen in den auditorischen Kortex?

2. Sind nach Training zum Erwerb einer FM-Diskriminierungsreaktion im auditorischen Kortex des Gerbils Änderungen der Genexpression auf Ebene der Transkription nachweisbar?
Material und Methoden

2. Material und Methoden

2.1. Verhaltensexperimente

2.1.1. Tiermaterial

Für die Versuche wurden adulte männliche Mongolische Wüstenrennmäuse (*Meriones unguiculatus*, Gerbil) verwendet. Die Tiere waren mindestens 3 Monate alt und wogen zwischen 70 - 100 g. Sie stammten aus der Eigenzucht des Institutes sowie von der Firma Charles River Inc. Die Haltung der Gerbils erfolgte in Gruppen zu je 5 Tieren in einer Plastschale (36 x 36 x 15 cm). Die Lufttemperatur im Raum variierte zwischen 21 und 24 °C, die relative Luftfeuchte zwischen 40 und 50 %. Durch künstliche Beleuchtung von 6.00 bis 18.00 Uhr wurde ein Hell-Dunkel-Rhythmus von 12 h Phasenlänge eingestellt. Die Versuche waren tierschutzrechtlich genehmigt (Genehmigungs-Nr. 53b-42502/2-111/150; IfN MD).

2.1.2. Lernparadigma

Lernapparatur

digitalisiert und über eine kommerzielle Soundkarte analog umgewandelt worden. Die Ausgabe der Töne über die Lautsprecher wurde mit einem Spektrumanalysator von Bruel & Kjaer kontrolliert.

Lernexperiment

Das Training fand täglich in der Zeit zwischen 7.00 und 14.00 Uhr statt. Das Intervall zwischen zwei Trainingssitzungen betrug 24 ± 1 h. Der Gerbil wurde zu Beginn für 3 min in die Shuttle-Box gesetzt (Habituation), um sich an die Umgebung zu gewöhnen. Während dieser Zeit wurde die sogenannte Startaktivität (SA, Explorationsaktivität) ermittelt, d.h. die Häufigkeit des Kompartimentwechsels während der Habituation. Das anschließende Training umfasste 60 Läufe. Die Tiere mussten lernen, zwischen 2 linear frequenzmodulierten Tönen (FM) als bedingte Reize zu diskriminieren ($CS = $ bedingter Reiz, 65 - 70 dB, 250 ms Dauer, 250 ms Intervall). Diese Töne überstrichen den gleichen Frequenzbereich zwischen 1 und 2 kHz und unterschieden sich lediglich in der Richtung der Modulation (aufwärts, abwärts). Beide CS wurden den Gerbils jeweils für 6 s präsentiert. Bei Darbietung des aufwärtsmodulierten FM ($CS+; 1 - 2$ kHz) mussten die Tiere innerhalb von 6 s das Kompartiment wechseln, ansonsten folgte anschließend für bis zu 4 s ein milder elektrischer Fußschock von 200 - 500 µA ($FS, UCS = $ unbedingter Reiz). Sobald die Tiere aber die gegenüberliegende Seite erreichten, endeten Ton und Fußreiz. Die Höhe des Fußschocks wurde für jedes Tiere zu Beginn einer jeden Trainingssitzung individuell eingestellt. Die Anfangsstärke betrug dabei 250 µA. Übersprangen die Gerbils aber während der ersten 6 s der Darbietung des CS+ die Hürde, wurde diese Antwort als korrekte konditionierte Reaktion (correct conditioned response, CR+) gewertet. Im Gegensatz dazu sollten die Tiere beim abwärtsmodulierten FM ($CS-; 2 - 1$ kHz) die Seite nicht wechseln. Wenn die Gerbils während der Präsentation des CS- (6 s) das Kompartiment verließen, bekamen sie auf der anderen Seite einen Strafreiz von 300 µA und diese Reaktion wurde als CR- (falsche Antwort) gewertet. CS+ und CS- wurden je 30 mal in pseudorandomisierter Reihenfolge dargeboten. Die Länge der Pausen zwischen den einzelnen Läufen varierte zwischen 5 - 15 s. Kompartimentwechsel der Tiere während dieser Zeit wurden vom Computer als ITC (intertrial crossing) gemessen.

Darstellung und statistische Bearbeitung der Verhaltensdaten

Die Auswertung der Versuche erfolgte mittels des StatView 5.0.1 (Abacus) Programms. Es wurden folgende Werte herangezogen: Diskriminierungsleistung (D; Differenz aus CR+ und
CR-), CR+, CR-, ITC und SA. Für die statistische Auswertung wurde mit einer ANOVA (Varianzanalyse) gearbeitet. Eine Irrtumswahrscheinlichkeit von \(p < 0.05 \) diente als Kriterium für statistisch signifikante Unterschiede. Konnten signifikante Unterschiede detektiert werden, so wurden zusätzlich weitere parametrische Tests herangezogen: der t-Test für unabhängige Stichproben, um die Behandlungsgruppen an einzelnen Trainingstagen miteinander zu vergleichen, und der t-Test für abhängige Stichproben, um Unterschiede zwischen verschiedenen Trainingstagen innerhalb der Behandlungsgruppen zu testen.

2.1.3. **Intrakortikale Injektionen**

2.1.3.1. **Operative Eingriffe**

Die Operation, um den Zugang zum AC zu ermöglichen, erfolgte generell einen Tag vor der Injektion. Bereits in vorhergehenden Arbeiten wurden die Prozedur für die Operation und die sich anschließenden intrakortikalen Substanzapplikationen beschrieben (Richter et al., 1999; Budinger et al., 2000b). Die Tiere wurden dafür tief anästhesiert (0,3 ml/100 g Körpermasse des Gerbils) mit einer Mischung aus 2 % Rhompun (Bayer) und 50 mg/ml Ketanest (Parke-Davis) im Verhältnis 1:4. Dann erfolgte die Rasur der Kopfhaut und die Desinfektion. Die Kopfhaut wurde anschließend zwischen Auge und Ohr eingeschnitten. Der dort befindliche Temporalmuskel konnte dann entfernt und der Knochen gesäubert werden. Drei Löcher mit ca. 1 mm Durchmesser wurden bilateral oder unilateral oberhalb der auditorischen Felder AI, AAF bzw. DP/VP gebohrt. Für die Platzierung der Bohrungen konnte man sich sehr genau am durch den Schädelknochen sichtbaren kortikalen Gefäßmuster des Gerbils orientieren (Hess und Scheich, 1996; Sugimoto et al., 1997) (siehe Abb. 2.1). Zur exakten Platzierung der Löcher wurden stereotaktische Koordinaten aus früheren Arbeiten verwendet (Scheich et al., 1993a; Thomas et al., 1993). Die Wundränder wurden anschließend mit Volon A Salbe (Sqiibb) behandelt.

2.1.3.2. **Substanzapplikationen**

Die Tiere wurden für die Injektionen mit 4 % Halothan (Eurim-Pharm) initial tief anästhesiert. Im weiteren Verlauf des Experiments wurde die Konzentration am Verdampfer (Halothan Vapor 19.3; Dräger) auf 1,5 - 2 % eingestellt. Die Injektionen erfolgten mit Hilfe eines Nanoliter-Injektionssystems (WPI) und einer dort befestigten Glaspipette (Durchmesser 20 µm), die mit einem Micropipette Puller (Sutter Instrument) auf einer Seite künstlich verengt worden war. Über diese Pipette wurde die entsprechende Substanz oder die zu dessen Lösung verwendete
Material und Methoden

Flüssigkeit in den AC appliziert. Die Mikropipette wurde ca. 1 mm tief in dorsoventraler Richtung und tangential zur Kortexoberfläche eingestochen. Es wurde jeweils 1 µl Lösung pro Bohrung mit einer Geschwindigkeit von 23 nl pro 5 s appliziert. Die Injektionsgebiete sind schematisch in Abb. 2.1c dargestellt. Insgesamt waren ca. 20 min für eine bilaterale Injektion nötig. Die Gerbils erwachten ca. 5 min nach Beendigung der Injektionen.

Folgende Substanzen wurden für Injektionen in den AC zu verschiedenen Zeitpunkten vor oder nach dem FM Diskriminierungslernen verwendet:

Anisomycin (ANI):

5 mg Anisomycin (Sigma) wurde in 1 M HCl gelöst und mit 1 M NaOH auf pH 7 titriert. Dann erfolgte die Einstellung der gewünschten Konzentration (66 mM und 113 mM) mit steriler isotonischer Kochsalzlösung (0,9 %, B. Braun).

Emetin (EME):

Es wurden 5 mg Emetin (Sigma) in steriler isotonischer Kochsalzlösung gelöst. Die Titrierung des pH-Wertes erfolgte mittels 1 M NaOH auf pH 7 und dann wurde mit 0,9 % NaCl auf die Konzentration von 15 mM (8,3 µg/µl) eingestellt.

Rapamycin:

100 µg Rapamycin (Calbiochem) wurden in 50 µl Ethanol gelöst. Durch Verdünnung mit 0,9 % NaCl wurden Injektionslösungen einer Konzentration von 60 nM Rapamycin in 0,03 % Ethanol/NaCl hergestellt.

FK506:

Für die Applikationen von FK 506 (Calbiochem) wurde ebenfalls eine Stammlösung mit einer Konzentration von 20 µg/µl in Ethanol hergestellt. Eine Verdünnung erfolgte in 0,9 % isotonischer Kochsalzlösung zu einer Konzentration von 6,0 ng/µl = 7,3 mM FK506 in 0,03 % Ethanol/NaCl.
Material und Methoden

2.2. Analysen zur Veränderung der Genexpression nach FM-Diskriminierungstraining

2.2.1. Chemikalien

Die verwendeten Chemikalien (Qualität: zur Analyse) wurden von den Firmen Boehringer/Roche, Fluka, Gibco Life Technologies, Merck, Roth, Serva und Sigma-Aldrich bezogen. Soweit nicht anders beschrieben, wurden die Lösungen mit steriles, deionisiertem Wasser angesetzt.

2.2.2. Kits und Enzyme

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calf Intestine Phosphatase (CIP)</td>
<td>Boehringer Roche</td>
</tr>
<tr>
<td>First-Strand cDNA Synthesis Kit</td>
<td>Amersham Pharmacia Biotech</td>
</tr>
<tr>
<td>DIG RNA Labelling Kit</td>
<td>Roche</td>
</tr>
<tr>
<td>Deoxynucleotide Triphosphate Set (dNTP-Mix)</td>
<td>Boehringer/Roche</td>
</tr>
<tr>
<td>1kb DNA Ladder</td>
<td>Eurogentec, MBI Fermentas</td>
</tr>
<tr>
<td>Megaprime™ DNA labelling System</td>
<td>Amersham</td>
</tr>
<tr>
<td>NucleoTrap PCR Kits</td>
<td>Clontech</td>
</tr>
<tr>
<td>PCR-Select™ cDNA Subtraction Kit</td>
<td>Gibco Life Technologies</td>
</tr>
<tr>
<td>Primer</td>
<td>Qiagen</td>
</tr>
<tr>
<td>QIAEX II Agarose Gel Extraction Kit</td>
<td>Qiagen</td>
</tr>
<tr>
<td>Qiagen Plasmid Purification Kit</td>
<td>Qiagen</td>
</tr>
<tr>
<td>QIAquick PCR Purification Kit</td>
<td>NEB, Gibco</td>
</tr>
<tr>
<td>Restriktionsenzym</td>
<td>Clontech</td>
</tr>
<tr>
<td>SMART™ PCR cDNA Synthesis</td>
<td>Qiagen</td>
</tr>
<tr>
<td>Taq-DNA-Polymerase</td>
<td>Boehringer/Roche</td>
</tr>
<tr>
<td>T4-DNA-Ligase</td>
<td>Qiagen</td>
</tr>
</tbody>
</table>
2.2.3. **Vektoren**

<table>
<thead>
<tr>
<th>Vektor</th>
<th>System</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCR® 2.1-TOPO</td>
<td>TOPO™ TA Cloning Kit</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pBluescript SK (+/-)</td>
<td></td>
<td>Stratagen</td>
</tr>
</tbody>
</table>

2.2.4. **Bakterienstamm**

Es wurde für alle Transformationen und zur Aufreinigung der Plasmide der E.coli XL-1 Blue MR Stamm verwendet.

2.2.5. **Allgemeine Lösungen**

- **LB Medium:**
 - 5 g Hefe Extrakt, 10 g Bacto-Trypton, 5 g NaCl, 100 µg/ml Ampicillin, ad 1000 ml H₂O

- **LB Platten:**
 - 1000 ml LB Medium, 15 g Agar,

- **10 x TBE:**
 - 0,89 M Tris-Base, 0,89 M Borsäure, 0,02 M EDTA

- **20x SSC Puffer:**
 - 3 M NaCl, 300 mM Trinatriumzitrat pH 7,4

2.2.6. **Krampfauslösende Stimulation mit Kainat**

Die Tiere bekamen intraperitoneal entweder Kainat (Sigma) in einer Dosis von 12 mg/kg, gelöst in steriler isotonischer Kochsalzlösung (0,9 %, B.Braun), oder die adäquate Menge an steriler Kochsalzlösung injiziert. Die Dauer des Experimentes betrug 6 h. Über diesen Zeitraum wurden die Tiere beobachtet und die einzelnen Krampfstadien aufgezeichnet. Als Orientierung diente hierbei eine für die Ratte erstellte Skala für Krampfstadien von 1 bis 6 (Zhang *et al.*, 1997). Danach erfolgte die Präparation der Hippokampi und der Kortizes.

2.2.7. **Präparation verschiedener Hirnregionen des Gerbils**

Bis zur weiteren Aufarbeitung erfolgte die Aufbewahrung aller Gewebeproben bei –70 °C.

2.2.8. Isolierung von Gesamt-RNA

Zur Minimierung von Kontaminationen durch Ribonukleasen und der damit verbundenen Gefahr der Degradation der RNA wurden die im folgenden beschriebenen Maßnahmen angewandt:

- Bei allen Arbeitsschritten wurden OP-Handschuhe getragen.
- Alle verwendeten Glas- und Plastmaterialien wurden über Nacht mit 0,1 % (v/v) Diethylpyrocarbonat (DEPC) behandelt. Glasmaterialien wurden dann 4 h bei 200 °C erhitzt, Plastmaterialien 20 min bei 121 °C autoklaviert und mehrere Stunden bei 80 °C getrocknet.
- Sämtliche Lösungen, mit Ausnahme Tris- oder SDS-haltiger Lösungen, wurden mit 0,1 % (v/v) DEPC behandelt, 2 - 4 h auf 37 °C erhitzt und anschließend autoklaviert. Trishaltige Lösungen wurden steril in DEPC-Wasser (DEPC-Wasser = H₂O deionisiert, 30 min mit 0,1 % (v/v) DEPC behandelt und autoklaviert) angesetzt und autoklaviert. Nicht autoklavierbare Lösungen, wie SDS, wurden mit DEPC-H₂O angesetzt und steril filtriert.
- Elektrophoresekammern und deren Zubehör wurden mit Detergenz gewaschen und mit DEPC-Wasser sowie Ethanol gespült. Nach Behandlung mit 3 % (v/v) H₂O₂ für 10 min bei Raumtemperatur, erfolgte eine abschließende Spülung mit DEPC behandeltem Wasser.

Für die Präparation der Gesamt-RNA wurde TRIzol Reagenz (Life Technologies-BRL) verwendet. TRIzol ist eine monophasische Lösung aus Phenol und Isothiozyanat und stellt eine Modifizierung der von Chomczynski und Sacchi (1987) entwickelten Methode dar. Die unten angegebenen Mengen sind für die Isolation von Gesamt-RNA aus 50 - 100 mg Gewebe geeignet. Bei davon abweichenden Gewebemengen wurde darauf geachtet, dass der Gewebeanteil im Homogenat 10 % (w/v) nicht übersteigt. Das noch gefrorene Gewebe wurde in 1 ml TRIzol mit Hilfe eines Ultra Turaxx T5 FU (IKA) ca. 1 min homogenisiert, 5 min bei Raumtemperatur inkubiert und dann zentrifugiert. Anschließend wurde der Überstand mit 200 µl Chlorform vermischt und 2 - 3 min bei Raumtemperatur inkubiert. Nach Zentrifugation wurde die wässrige von der organischen Phase getrennt und zur Präzipitation der RNA mit 0,5 ml Isopropanol versetzt und zentrifugiert. Das RNA-Präzipitat wurde in 50 µl DEPC-Wasser 10 min bei 60 °C gelöst. Durch die Messung der Adsorption bei 260 nm und 280 nm konnte die Konzentration und...
die Reinheit der RNA wie folgt ermittelt werden: \(1 \text{ OD}_{260}\) (Optische Dichte bzw. Absorption bei 260 nm) entspricht 40 µg RNA pro ml, der Quotient aus \(\text{OD}_{260}/\text{OD}_{280}\) lag zwischen 1,8 und 2,0, was für eine hohe Reinheit der RNA spricht (Sambrook et al., 1989). Bis zur Verwendung wurde die RNA bei –70 °C aufbewahrt.

2.2.9. **Subtraktive Hybridisierung**

Die hier verwendete, abgewandelte Methode der subtraktiven Hybridisierung, die SSH, ist geeignet, um zwei verschiedene mRNA-Populationen miteinander zu vergleichen (Diatchenko et al., 1996; Gurskaya et al., 1996). Die Methode basiert auf der Möglichkeit, sogenannte Adaptoren an cDNA-Fragmente anzuheften, um selektiv die Amplifikation von nicht differentiell exprimierten Transkripten in PCR-Reaktionen zu unterdrücken. Durch die SSH werden vorzugsweise solche Gene erfasst, die in einem von zwei zu vergleichenden Zell- oder Gewebetypen eine veränderte Expression aufweisen.

In der vorliegenden Arbeit, wurde für die SSH der PCR-Select™ cDNA Subtraction Kit (Clontech) genutzt. Dazu wurde RNA aus dem AC von 5 untrainierten und 5 trainierten (5 h nach FM-Diskriminierungslernen, siehe 2.2.8) Gerbils isoliert. Es erfolgte eine Änderung des vom Hersteller empfohlenen Protokolls dahingehend, dass für die ersten Schritte, das Umschreiben der RNA in cDNA mittels RT-PCR, der SMART™ PCR cDNA Synthesis Kit genutzt wurde. Dieses System bietet die Möglichkeit, cDNA über die gesamte Länge der mRNA-Moleküle herzustellen. Somit stand auch genügend Ausgangsmaterial für die SSH zur Verfügung. Die cDNA von trainierten Gerbils wird im folgenden als *tester*-cDNA und die cDNA von naiven Kontrolltieren als *driver*-cDNA bezeichnet (Übernahme dieser Termini aus dem Handbuch des Kits).

2.2.9.1. **cDNA-Synthese**

Die cDNA-Synthese wurde mit dem SMART™ PCR cDNA Synthesis Kit (Clontech) entsprechend der Empfehlung des Herstellers durchgeführt, der Ablauf ist in Abb. 2.2 schematisch dargestellt. Die RT-PCR startet mit der Bindung eines oligo (dT)-Primer (CDS Primer) am polyA⁺ Ende einer mRNA. Wenn die Reverse Transkriptase das 5'-Ende der mRNA erreicht, synthetisiert sie durch ihre Terminale-Transferase-Aktivität zusätzlich einige Nukleotide, vorrangig Deoxyctydin (dC), an die cDNA. An diesen Oligo-dC-Überhang bindet nun das SMART™-Oligonukleotid, welches eine oligo (dG)-Sequenz an seinem 3'-Ende besitzt.
und bildet so eine verlängerte Vorlage für die Reverse Transkriptase. Für die Zweitstrangsynthese konnten dann die Sequenzen des SMART™-Oligonukleotides und des Primer genutzt werden.

Abb. 2.2 Schematische Darstellung der cDNA Synthese mit dem SMART™ PCR cDNA Synthesis Kit (modifiziert nach dem Handbuch des SMART™ PCR cDNA Synthesis Kit (Clontech))

Erststrang-cDNA-Synthese

cDNA-Amplifikation durch LD-PCR

Für die PCR verwendete man die Sequenzen des CDS-Primers und des SMART™-Oligonukleotides. Pro Probe und Kontrolle wurden jeweils drei PCR-Ansätze hergestellt, zwei davon anschließend weiter genutzt. Zu 1 µl cDNA aus der Erststrangsynthese wurden 10 µl 10 x
cDNA-PCR-Puffer, 2 µl dNTP, 2 µl 10µM PCR-Primer und 2 µl 50 x Advantage cDNA-Polymerase-Mix pipettiert. Das Gesamtvolumen einer Reaktion betrug 100 µl.

Die PCR-Bedingungen wurden für den im Labor vorhandenen Triblock (Biometra) optimiert.

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 °C</td>
<td>1 min</td>
</tr>
<tr>
<td>gesamt:</td>
<td>1 Zyklus</td>
</tr>
<tr>
<td>95 °C</td>
<td>1 min</td>
</tr>
<tr>
<td>65 °C</td>
<td>30 s</td>
</tr>
<tr>
<td>68 °C</td>
<td>6 min</td>
</tr>
<tr>
<td>gesamt:</td>
<td>24 Zyklen</td>
</tr>
</tbody>
</table>

Die PCR wurde abgestoppt, zwei Ansätze vereint und dann über Säulenchromatographie gereinigt.

2.2.9.2. Subtraktive Hybridisierung

Nach der Aufreinigung der cDNA wurden in den nächsten Arbeitsschritten die Komponenten des PCR-Select™ cDNA Subtraction Kit verwendet. Die tester- und driver-cDNA wurde für den Rsal Verdau noch nach dem SMART-Protokoll behandelt (Empfehlung des Herstellers). Der schematische Ablauf der subtraktiven Hybridisierung ist in Abb. 2.3 dargestellt.

Rsal Verdau

Die gereinigte cDNA wurde mit einem Restriktionsenzym, Rsal, geschnitten, so dass die entstehenden Stücke glatte Enden besaßen. Das Rsal erkennt die Basensequenz 5'-GTAC-3'. Zu den gereinigten cDNAs wurden je 36 µl 10 x Rsal-Restriktionspuffer sowie 1,5 µl Rsal pipettiert. Die Ansätze inkubierten dann für 3 h bei 37 °C. Mit Hilfe des NucleoTrap PCR Kits (Clontech) erfolgte die chromatographische Aufreinigung der geschnittenen cDNA-Ansätze.

Adaptorligation

1 µl Skelettmuskel-cDNA mit 2 µl einer 1:20 verdünnten φX174 DNA, <i>Hae</i>III-geschnitten, gemischt. Dieses Gemisch diente als Kontroll-<i>tester</i>- und die reine Skelettmuskel-cDNA als Kontroll-<i>driver</i>-cDNA. Die Adaptoren wurden nur an die <i>tester</i>-cDNA und die Kontroll-<i>tester</i>-cDNA ligiert. Für die Reaktion wurden 5,5 µl der cDNA 1:1 mit H2O verdünnt, wovon man jeweils 2 µl für die 2 Ansätze verwendete. Es wurde parallel ein Mastermix hergestellt, der pro Ansatz 3 µl H2O, 2 µl Ligationspuffer und 1 µl T4-DNA-Ligase (400 U/µl) enthielt. Zu je einem der zwei Ligationsansätze wurde entweder 2 µl des Adaptors 1 oder Adaptors 2R pipettiert. Die Inkubation der Reaktion erfolgte über Nacht bei 16 °C.

Abb. 2.3 Schematisches Ablaufschema der SSH (modifiziert nach dem Handbuch des PCR-Select™ cDNA Subtraction Kit (Clontech))
Erste Hybridisierung
Nach der Ligation der Adaptoren erfolgte die Hybridisierung der *driver*- und der *tester*-cDNA bzw. der Kontroll-*driver*- und der Kontroll-*tester*-cDNA in zwei einzelnen Schritten. Hierbei wurden zunächst in zwei getrennten Ansätzen ein Überschuss an *driver*-cDNA zu dem jeweiligen Ansatz der Ligation gegeben. Die Konzentrationen von häufig und weniger häufig vorkommenden cDNAs gleichen sich aufgrund der Reaktionskinetik 2. Ordnung aus. Genprodukte, welche nach Stimulation verändert sind, reichern sich als Einzelstränge an. In der ersten Hybridisierung wurde zu je 1,5 µl Ansatz der mit Adaptor 1 oder -2R ligierten *tester*-cDNA 1,5 µl der *RsaI*-verdauten *driver*-cDNA sowie 1 µl 4 x Hybridisierungspuffer gegeben. Nach kurzer Hitzedenaturierung wurden die Ansätze 8 h bei 68 °C inkubiert.

Zweite Hybridisierung
Für die zweite Hybridisierung wurden die zwei Ansätze der ersten Hybridisierung gemischt und noch mal mit frischer *driver*-cDNA versetzt. Der Ansatz wurde aber nicht mehr erhitzt, um eine Denaturierung bereits gebildeter Hybride zu verhindern. Nur einzelsträngige subtrahierte *tester*-cDNA konnte in diesem Abschnitt binden und so Hybride bilden, von denen jeweils ein Strang den Adaptor 1 und der andere Strang den Adaptor 2R trägt. Für die zweite Hybridisierung wurden zunächst 1 µl frische *driver*-cDNA gemischt mit 1 µl 4 x Hybridisierungspuffer sowie 2 µl H₂O, dann denaturiert. Dieses und die beiden Reaktionen der ersten Hybridisierung wurden miteinander vermischt. Die Inkubation der Ansätze erfolgte über Nacht bei 68 °C, danach wurden sie mit 200 µl Puffer verdünnt und für 7 min bei 68 °C erhitzt.

Erste Amplifikation mittels PCR
Während der zwei nun folgenden PCR-Reaktionen erfolgte die exponentielle Amplifikation der Hybride, welche den Adaptor 1 und 2R tragen. Im Gegensatz dazu war für Moleküle mit nur einem Adaptor nur eine lineare Vervielfältigung möglich. An Moleküle ohne Adaptor können die Primer nicht binden, es fand somit keine Amplifikation statt. Die 5'-Sequenz der Adaptoren ist komplementär zu dem PCR-Primer der ersten PCR-Reaktion. Zu Beginn wurden aber die komplementären Enden der Adaptoren 1 und 2R durch DNA-Polymerase aufgefüllt. Dazu wurden 1 µl des Hybridisierungsansatzes zu 19,5 µl sterilen H₂O, 2,5 µl 10 x PCR-Reaktionspuffer, 0,5 µl 10 mM dNTP-Mix, 1 µl 10 µM PCR-Primer 1 und 0,5 µl 50 x Advantage cDNA-Polymerase-Mix pipettiert.
Die Reaktion wurde bei 75 °C für 5 min inkubiert und anschließend erfolgte die erste PCR unter folgenden Bedingungen in einem Triblock (Biometra):

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 °C</td>
<td>5 min</td>
</tr>
<tr>
<td>gesamt: 1 Zyklus</td>
<td></td>
</tr>
<tr>
<td>94 °C</td>
<td>30 s</td>
</tr>
<tr>
<td>66 °C</td>
<td>30 s</td>
</tr>
<tr>
<td>72 °C</td>
<td>1,5 min</td>
</tr>
<tr>
<td>gesamt: 30 Zyklen</td>
<td></td>
</tr>
</tbody>
</table>

Zweite Amplifikation mittels PCR

Der 3'-terminale Teil der Adaptoren diente nun zum Anheften der PCR-Primer 1 und 2R. Die PCR-Bedingungen entsprachen denen der vorausgegangenen PCR mit Ausnahme der Hybridisierungstemperatur, welche von 66 °C auf 68 °C erhöht wurde. Die Anzahl der Zyklen betrug 15. Die PCR-Produkte aus der 1. PCR-Reaktion wurden 1:10 verdünnt und davon 1 µl mit 18,5 µl sterilem H2O, 2,5 µl 10 x PCR-Reaktionspuffer, 1 µl 10 mM Nested PCR-Primer 1, 1 µl 10 mM Nested PCR-Primer 2R, 0,5 µl 10 mM dNTP-Mix und 50 x Advantage cDNA-Polymerase-Mix vermischt.

Ein Aliquot aus der 2. PCR, der unsubtrahierten tester-cDNA sowie der subtrahierten cDNA der Kontrolle (Skelettmuskel der Menschen) wurden abschließend gelektrophoretisch getestet, um den Erfolg der subtraktiven Hybridisierung zu überprüfen.

2.2.10. Charakterisierung der erhaltenen Klone

2.2.10.1. Transformation von Bakterien

2.2.10.2. Plasmid-Präparation (Mini-, Midipräparation)

P1-Puffer (Resuspensions-Puffer): 50 mM Tris, pH 8,0, 10 mM EDTA, 100 µg/ml RNase
P2-Puffer (Lyse-Puffer): 200 mM NaOH, 1 % SDS
P3-Puffer (Neutralisations-Puffer): 3 M Kalziumazetat

Die Plasmid-Mini-Präparation erfolgte mittels alkalischer Lyse nach Birnboim und Doly (1979) und Sambrook et al. (1989). Eine 3 ml Übernacht-Kultur wurde zentrifugiert und in 200 µl P1-Puffer resuspendiert. Nach Zugabe von 200 µl P2-Puffer wurde die Bakterien vorsichtig gemischt und 1 - 5 min inkubiert. Das Lysat wurde mit 200 µl eisgekühltem P3-Puffer versetzt, danach maximal 5 min auf Eis stehen gelassen und anschließend 5 min zentrifugiert. 510 µl des Überstandes wurden mit 350 µl Isopropanol versetzt, 5 min inkubiert und wiederum zentrifugiert (5 min). Das entstandene Pellet wurde einmal mit 70 % Ethanol gewaschen, getrocknet und in 50 µl H2O eluiert. Wenn die Plasmide sequenziert werden sollten oder für die Präparation größerer Mengen Plasmid-DNA wurden 3 bzw. 100 ml Übernachtkultur mit Hilfe des Plasmid Purification Kit (für Mini- oder Midipräparation, Qiagen) nach Angaben des Herstellers aufgereinigt.

2.2.10.3. Restriktion von DNA

Um DNA-Fragmente zu schneiden, wurden verschiedene Restriktionsenzyme nach Angaben der Hersteller mit einer Aktivität von 10 U pro Ansatz verwendet.
2.2.10.4. Agarose-Gelektrophorese und Elution von DNA

Agarose: Ultra Pure, Gibco
Ethidiumbromidlösung: 10 mg/ml in 10 mM Tris/HCl, 1 mM EDTA, pH 8,0
5 x DNA-Probenpuffer: 0,25 % (w/v) Xylole cyanol, 0,25 % (w/v) Bromphenolblau, 30% (v/v) Glycerin

Für die Auftrennung von DNA-Fragmenten wurde je nach Größe ein 0,8 - 1,2%iges (präparatives Gel = 1,2 %) in 1 x TBE hergestellt und zu diesem 0,5 µg/ml Ethidiumbromid-Lösung gegeben. Alle Proben und der Fragmentlängenstandard (siehe 2.2.2) wurden vor der Auftragung mit 5 x DNA-Probenpuffer versetzt. Die elektrophoretische Auftrennung erfolgte in einer horizontalen Elektrophoreskammer (Biorad) mit 1 x TBE-Puffer bei einer Stromstärke von 10 V/cm. Wenn DNA-Fragmente aus dem Gel isoliert wurden, dann erfolgte dies unter UV-Licht mittels eines Skalpells. Die Eluierung der Fragmente erfolgte nach Angaben des Herstellers (Qiagen) mit dem QIAEX II Agarose Gel Extraction Kit.

2.2.10.5. Sequenzierung und Sequenzanalyse der Klone

2.2.11. Dot-Blot-Hybridisierung

2.2.11.1. Amplifikation der Klone

Für jeden Klon wurde eine PCR-Reaktion mit einem Gesamtvolumen von 100 µl durchgeführt.

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmid</td>
<td>100 ng</td>
</tr>
<tr>
<td>10 x PCR-Puffer</td>
<td>10 µl</td>
</tr>
<tr>
<td>MgCl₂ (25 mM)</td>
<td>2 µl</td>
</tr>
<tr>
<td>dNTP (10 mM)</td>
<td>2 µl</td>
</tr>
<tr>
<td>M13-Reverse-Primer</td>
<td>4 µl</td>
</tr>
<tr>
<td>M13-Forward-Primer</td>
<td>4 µl</td>
</tr>
<tr>
<td>Taq-DNA-Polymerase (5 U/µl)</td>
<td>1 µl</td>
</tr>
</tbody>
</table>

M13-Reverse-Primer 5' - CAG GAA ACA GCT ATG AC - 3'
M13-Forward-Primer 5' - GTA AAA CGA CGG CCA G - 3'

Nach einer Hitzdenaturierung (96 °C, 3 min) wurde die PCR-Reaktion in einem Triblock (Biometra) unter folgenden Bedingungen durchgeführt:

- 96 °C 30 s
- 50 °C 15 s
- 72 °C 3 min

gesamt: 35 Zyklen

Ein Aliquot jeder Reaktion wurde anschließend einer 0,8 – 1 %igen Agarose-Gelelektrophorese unterzogen, um den Erfolg der Amplifikation zu überprüfen oder diese gegebenenfalls zu wiederholen. Die Konzentrationsbestimmung erfolgte photometrisch mit dem GeneQuant (Pharmacia) bei einer Wellenlänge von 260 nm (Sambrook et al., 1989).

2.2.11.2. Immobilisierung der PCR-Fragmente

Methylenblau-Lösung: 0,5 M Natriumazetat-Trihydrat pH 5,2, 0,04% (w/v) Methylenblau

Für die Immobilisierung wurden die PCR-Fragmente auf eine Membran (Hybond-N, Amersham) aufgebracht. Die Membran wurde dafür in Sektoren unterteilt und jeweils ca. 250 ng eines PCR-Produktes pro Sektor aufgetragen. Die Membranen wurden danach 7 min in 1,5 M NaCl, 0,5 M NaOH denaturiert, anschließend zweimal 7 min in 0,2 M Tris/HCl, 2 x SSC neutralisiert und zum Schluss zweimal mit 2 x SSC gewaschen. Nach 30 min Trocknen bei 80 °C erfolgte die irreversible Bindung der cDNA an die Membran (0,12 J/cm²). Die Immobilisierung der PCR-Produkte wurde durch eine Methylenblau-Färbung überprüft. Dazu wurden der Blots 15 min in 5 % (v/v) Essigsäure gebracht, dann 15 min in Methylenblau-Lösung inkubiert und abschließend durch mehrmaliges Spülen mit deionisiertem Wasser entfärbt.
2.2.11.3. Radioaktive Markierung der Sonden

\[
\begin{align*}
&\text{je } 4 \mu l \quad \text{dCTP, dGTP, dTTP} \\
&\text{5 } \mu l \quad \text{Reaktionspuffer} \\
&\text{2 } \mu l \quad \text{Klenow-Fragment (1 U/µl)} \\
&\text{5 } \mu l \quad (\alpha-^{32}\text{P}) \text{ dATP (6000 Ci/mmol, Amersham)}
\end{align*}
\]

Die Markierungsreaktion wurde 30 min bei 37 °C inkubiert. Die Trennung der markierten Sonden vom Reaktionsgemisch erfolgte chromatographisch mittels MicroSpin-G50-Säulchen (AP Biotech). Die im Beckman Szintillationsmessgerät LS 6000 LL gemessene spezifische Aktivität der Sonden betrug etwa 8 x 10^5 cpm/µl. Für die Hybridisierung wurde die gesamten 50 µl der gereinigten Sonde eingesetzt.

2.2.11.4. Dot-Blot-Hybridisierung

Die Blots wurden als erstes in Rapid-Hyb-Puffer (Amersham) für 2 h bei 65 °C prähybridisiert. Anschließend wurde zu dem Puffer die radioaktiv markierte, frisch denaturierte Sonde gegeben. Die Hybridisierung erfolgte für 2 h bei 65 °C. Die Membranen wurden nach Entfernen der Sonde wie folgt gewaschen:

\[
\begin{align*}
&1 \times 20 \text{ min bei Raumtemperatur in } 5 \times \text{SSC; } 0,1 \% \text{ (w/v) SDS} \\
&2 \times 20 \text{ min bei } 65 \, ^\circ\mathrm{C} \text{ in } 1 \times \text{SSC; } 0,1 \% \text{ (w/v) SDS} \\
&2 \times 20 \text{ min bei } 65 \, ^\circ\mathrm{C} \text{ in } 0,1 \times \text{SSC; } 0,1 \% \text{ (w/v) SDS}
\end{align*}
\]

2.2.12. Klonierung von BDNF-, Activin-βA- und GAPDH-cDNA

Zur Klonierung dieser drei cDNAs wurde Gesamt-RNA vom AC eines naiven Gerbils isoliert (siehe 2.2.8). Die RT-PCR erfolgte unter Verwendung des First-Strand cDNA Synthesis Kit (Amersham Pharmacia). Hierzu wurden zu 1 µg total RNA 11 µl Bulk First Strand Reaction Mix, 1 µl pd-(N)₆-Primer, 1 µl 200 mM DTT bis zu einem Endvolumen von 33 µl gegeben und die Reaktion 1 h bei 37 °C inkubiert. Für die PCR-Synthese von BDNF-, Activin-βA- und GAPDH (Glycerinaldehyd-3-phosphat-Dehydrogenase)-cDNA wurden folgende Komponenten gemischt:

1 µl cDNA
10 µl 10 x PCR-Puffer
20 µl 5 x Q-Solution
1 µl 25 mM MgCl₂
2 µl 10 µM Reverse-Primer
2 µl 10 µM Forward-Primer
2 µl 10 mM dNTP-Mix
0,5 µl 5 U/µl Taq-DNA-Polymerase
Wasser ad 100 µl

Die Primer und die cDNA wurden erst während einer Hitzedenaturierung von 5 min bei 95 °C hinzugefügt.

PCR-Parameter:
95 °C 30 s
62 °C 30 s
72 °C 30 s
gesamt: 5 Zyklen
95 °C 30 s
72 °C 1 min
gesamt: 30 Zyklen

Tab. 2.1 Primersequenzen für die Amplifizierung von BDNF, Activin-βA und GAPDH, die Restriktionsschnittstellen wurden unterstrichen

<table>
<thead>
<tr>
<th>Primersequenz</th>
<th>5’- Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDNF-Reverse-Primer</td>
<td>5’ – CGCGAATTCCCTATCTTCCCTTTTTATGGTC – 3’</td>
</tr>
<tr>
<td>BDNF-Forward-Primer</td>
<td>5’ – TCTGGATCCCCGTGTGACAGGATAGCGA – 3’</td>
</tr>
<tr>
<td>Activin-βA-Reverse-Primer</td>
<td>5’ – CGCGAATTCCGGATGGTGACTTTGGTTCCTG – 3’</td>
</tr>
<tr>
<td>Activin-βA-Forward-Primer</td>
<td>5’ – TCTGGATCCCTGAAGAAGAGACCCCGATGTC – 3’</td>
</tr>
<tr>
<td>GAPDH-Reverse-Primer</td>
<td>5’ – CGCGAATTCACACGGGAAGGCCATGCCAG – 3’</td>
</tr>
<tr>
<td>GAPDH-Forward-Primer</td>
<td>5’ – TCTAAGCCTCAAGGTCATCCATGACA – 3’</td>
</tr>
</tbody>
</table>
Eine Kontrolle der PCR auf korrekte Größe erfolgte mittels elektrophoretischer Fraktionierung in 1,2%-igen (w/v) Agarose-Gelen. Über Schnittstellen für EcoRI und BamHI bzw. BamHI und HindIII an den 5'-Enden der Primer (siehe Tab. 2.1) wurden die PCR-Fragmente in das pCR-Script Amp SK (+/-)-Plasmid ligiert. Für die Ligation wurde eine ATP-abhängige T4-DNA-Ligase nach Angaben des Herstellers eingesetzt. Das Verhältnis des zu klonierenden DNA-Fragmentes zum Vektor war 3:1. Der Ligationsansatz wurde 3 h bei Raumtemperatur oder über Nacht bei 16 °C inkubiert.

2.2.13. Expressionsanalyse durch Northern-Blot-Hybridisierung

2.2.13.1. Denaturierende Agarose-Gelelektrophorese und Northern-Blot-Hybridisierung

<table>
<thead>
<tr>
<th>10x MOPS:</th>
<th>200 mM MOPS, 50 mM Natriumacetat, 10 mM EDTA, pH 8,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerin/Bromphenolblau:</td>
<td>0,5 ml 10 % (w/v) SDS, 4 mg Bromphenolblau, 5 ml Glycerol, 0,5 ml 0,5 M EDTA, pH 8,0, ad 10 ml DEPC-Wasser</td>
</tr>
<tr>
<td>RNA-Probenpuffer:</td>
<td>200 µl 37 % Formaldehyd, 100 µl 10 x MOPS, 500 µl Formamid, deionisiert, 200 µl Glycerin/Bromphenolblau, ad 1 ml DEPC-Wasser</td>
</tr>
<tr>
<td>Präparation des RNA-Gels:</td>
<td>2,5 g Agarose (Gibco BRL) in 150 ml DEPC-Wasser und 25 ml 10 x MOPS aufkochen, dann auf ca. 60 °C abkühlen, 45 ml 37 % Formaldehyd und 30 ml DEPC-Wasser zugeben</td>
</tr>
</tbody>
</table>

15 µg (in 5 µl DEPC-H₂O) Gesamt-RNA wurden gemischt mit 20 µl RNA-Probenpuffer, für 15 min bei 68 °C hitzedenaturiert und anschließend 5 min auf Eis gestellt. Die Proben wurden auf ein horizontales 1%iges (w/v) denaturierendes Agarose-Gel geladen. Die Elektrophorese fand in 1 x MOPS-Puffer bei einer Feldstärke von ungefähr 1 V/cm statt, wobei der Laufpuffer ständig zirkulierte. Nach kurzem Abspülen des Gels mit 20 x SSC, wurde die RNA durch Kapillarblotting über Nacht in 20 x SSC auf eine Nylonmembran (Hybon-N, Amersham) transferiert. Die Blots wurden anschließend 30 min bei 80 °C getrocknet und dann die RNA mittels UV-Licht (0,12 J/cm²) irreversibel an die Membran gebunden. Um die Effektivität des Transfers und die Qualität der RNA zu überprüfen wurde die Nylonfilter einer Methylenblau-Färbung unterzogen (siehe 2.2.11.2).
2.2.13.2. Herstellung der cDNA-Sonden

2.2.13.3. Radioaktive Markierung der Sonden

Die Markierungsreaktion erfolgte wie unter 2.2.11.3 beschrieben. Für jeden Ansatz wurden 25 ng der jeweiligen Sonde eingesetzt. Die spezifische Aktivität der markierten Sonden betrug ca. 6 – 9 x 10^5 cpm/µl. Zu jedem Hybridisierungsansatz wurden die gesamten 50 µl der gereinigten Sonde gegeben.

2.2.13.4. Northern-Blot-Hybridisierung

50 x Denhardt's Lösung: 1 % (w/v) Ficoll 400, 1 % (w/v) Polyvinylpyrrolidon, 1 % (w/v) BSA Fraktion V (Sigma)
Hybridisierungslösung: 1 % (w/v) SDS, 5 x Denhardt’s Lösung, 5 x SSC, 50 % (v/v) Formamid, deionisiert (Roth)

Die Hybridisierung erfolgte in Glasflaschen (Biometra) in einem Hybridisierungsofen (Biometra). Zu Beginn wurden die Blots 2 h bei 65 °C im Hybridisierungspuffer mit frisch denaturierter Heringssperma-DNA (10 mg/ml, Serva) prähybridisiert. Dann konnte die frisch denaturierte Sonde in den Puffer dazu gegeben werden. Die Hybridisierung erfolgte über Nacht bei 65 °C. Anschließend wurden die Membranen 1 x 20 min bei Raumtemperatur mit 2 x SSC, 0,1 % (w/v) SDS, 2 x 15 min bei 65 °C mit 1 x SSC, 0,1 % (w/v) SDS und 2 x 15 min bei 65 °C mit 0,1 x SSC, 0,1 % (w/v) SDS gewaschen. Die Effektivität des Waschvorganges wurde mit einem Geiger-Müller-Zählrohr überwacht.
2.2.13.5. Autoradiographie und Auswertung der Autoradiogramme

2.2.14. Nicht-radioaktive in situ-Hybridisierung

2.2.14.1. Präparation des Gewebes

Präparation der Objektträger

Die Objektträger wurden für 2 h mit Detergenz gewaschen, dann in deionisiertem Wasser und 98 % (v/v) Ethanol abgespült. Anschließend erfolgte eine Sterilisierung bei 160 °C. Nach dem Abkühlen wurden die Objektträger in einem Azeton/6 % (v/v) 3-Aminopropyliethoxysilangemisch (Sigma) beschichtet, zweimal in Azeton und zweimal in deionisiertem Wasser gespült, bevor sie über Nacht bei 55 °C trockneten. Diese Prozedur wurden am darauf folgenden Tag wiederholt und die Objektträger anschließend steril verpackt gelagert.

Herstellung von Gefrierschnitten

Die Hirne wurden in einem Kryostaten (Microm HM 500 OM) geschnitten und vor Beginn mindestens 1 h an die Temperatur im Kryostatinnenraum adaptiert. Die Gehirne wurden in einer horizontalen Ebene in 20 µm Dicke geschnitten. Die Temperatur im Kryostatinnenraum wurde auf -20 °C und die des Messers auf -12 °C eingestellt. Die Schnitte wurden auf die beschichteten Objektträger aufgezogen und dann 2 min an der Luft getrocknet. Bis zur weiteren Verwendung wurden die luftgetrockneten Hirnschnitte bei –20 °C aufbewahrt.

2.2.14.2. Herstellung der Sonden

Plasmidlinearisierung

Für die Linearisierung der Plasmide wurden die Klone, welche in das pCR® 2.1-TOPO-Plasmid subkloniert waren (siehe 2.2.11.1), in den pCR-Script Amp SK (+/-)-Vektor umkloniert. Für die

in vitro-Transkription

Das Umschreiben der DNA in cRNA erfolgte mit dem DIG RNA Labelling Kit (Roche). Zu 1 µg der linearisierten DNA wurden 2 µl 10 x Transkriptionspuffer, 5 µl 40 mM DTT, 1 µl (20 U/µl) RNase Inhibitor, 2 µl 10 x DIG-Mix (10 mM ATP, 10 mM CTP, 10 mM GTP, 6,5 mM UTP, 3,5 mM DIG-11-UTP, pH 7,5) und 1,5 µl T7- oder T3-RNA-Polymerase in einem Gesamtvolumen von 20 µl gegeben. Die in vitro-Transkriptionsreaktion inkubierte für 3 h bei 37 ºC, danach wurde nochmals 1 µl der jeweiligen RNA-Polymerase dazu pipettiert und der Ansatz über Nacht bei 37 ºC inkubiert. Am folgenden Tag wurde 1 µl (10 U/µl) RNase-freie DNase I hinzugefügt und nochmals für 15 - 20 min bei 37 ºC inkubierte. Anschließend wurde diese Reaktion mit 2,4 µl 4 M LiCl, 2 µl 0,5 M EDTA pH 8,0 und 65 µl absolutem Ethanol bei −70 ºC mindestens 1 h prézipitiert. Nach Zentrifugation wurde das Präzipitat mit 70 % (v/v) Ethanol gewaschen und in 100 µl DEPC-Wasser resuspendiert.
Material und Methoden

alkalische Hydrolyse

Um Sonden von einer Länge ≤ 300 bp zu erhalten, wurden längere cRNAs einer alkalischen Hydrolyse unterzogen. Dazu wurden die gesamte in 100 µl DEPC-H₂O gelöste cRNA zusammen mit 100 µl Hydrolyselösung (40 mM NaHCO₃, 60 mM Na₂CO₃) bei 65 °C für eine vorher berechnete, aus der Länge des Transkriptes hervorgehende, Zeit inkubiert. Unmittelbar danach erfolgte die Neutralisierung mit 100 µl 0,1 M HCl. Die Sonden wurden aliquotiert und bis zu ihrer Verwendung bei -80 °C aufbewahrt.

Berechnung:

\[(\text{Länge des Transkriptes} - 0,3) / (\text{Länge} \times 0,3 \times 0,11) = \text{Inkubationszeit in min}\]

2.2.14.3. in situ-Hybridisierung

10 x PBS, pH 7,4	1,5 mM NaCl, 83 mM Na₂HPO₄, 17 mM NaH₂PO₄ x H₂O
Prähybridisierungspuffer:	100 mM Tris/HCL, pH 7,6, 40 mM NaCl, 50 mM EDTA, 5 x Denhardt's Solution (Sigma), 25 mg tRNA (Yeast tRNA, Roche), fertige Lösung 1:1 verdünnen mit 100 % deionisiertem Formamid (Roth)
10 x Hybridisierungspuffer:	100 mM Tris/HC, pH 7,5; 10 mM EDTA, 10 x Denhardt's Solution, 50 mg tRNA, 10 mg poly-A-RNA (Sigma)
Hybridisierungspuffer:	50 % deionisiertes Formamid, 10 % Dextranulfat, 10 % 10 x HB, 333 mM NaCl, 100 mM DTT
P1Dig:	100 mM Tris/HC, 150 mM NaCl, pH 7,5
P3Dig	100 mM Tris/HC, 100 mM NaCl, 50 mM MgCl₂ x 6H₂O, pH 9,5
P4Dig:	10 mM Tris/HC, 1 mM EDTA, pH 8,0
MMB:	1 % Blocking Reagent (Roche), 0,5 % BSA (Fraction V) in P1Dig
Entwicklungslösung:	35 µl NBT (100 mg/ml Stammlösung, Roche), 35 µl BCIP (50 mg/ml Stammlösung, Roche), 10 µl Levamisole (250 µg/µl, Sigma) auf 10 ml P3Dig

Zu Beginn erfolgte eine Fixierung der Gefrierschnitte für 30 min in 4 % (w/v) Paraformaldehyd. Nach drei Waschschritten in 1 x PBS wurden die Schnitte für 5 min in 70 % (v/v) Ethanol und dann zweimal mit DEPC-H₂O gespült. Anschließend wurden sie 5 min mit 0,1 M HCl behandelt, dreimal mit 1 x PBS gewaschen sowie 20 min in 0,1 M Triethanolamin/0,25 % Essigsäureanhydrid inkubierte. Im Anschluss an diese Behandlung folgten wieder drei Waschschritte mit 1 x PBS sowie das Entwässern der Schnitte in einer aufsteigenden Alkoholreihe. Anschließend wurden sie für die Prähybridisierung mit je 700 µl Prähybridisierungspuffer überschichtet und 3 h bei 37 °C inkubierte. Es folgte anschließend die Hybridisierung der Schnitte über Nacht bei 55 °C mit 2,5 µl oder 5 µl cRNA-Sonde pro ml Hybridisierungspuffer. Nach verschiedenen Waschschritten (2 x 30 min 0,2 x SSC bei 55°C, 3 x 90 min 0,1 x SSC/50 % Formamid bei 55 °C, 10 min 0,2 x SSC bei Raumtemperatur, 10 min P1Dig bei Raumtemperatur) wurden die Schnitte am darauf folgenden Tag 30 min in MBM
blockiert und anschließend über Nacht bei 4 °C mit einem 1:500 in MBM verdünnten Anit-DIG-Antikörper (Anti-DIG-AP Fab Fragment, Roche) inkubiert. Die Gewebeschnitte wurden nochmals gewaschen (2 x 15 min P1Dig, 5 min P3Dig) und dann erfolgte die Entwicklung der Schnitte mit den Substraten für die Alkalische Phosphatase. Die Entwicklung der Farbreaktion erfolgte im Dunkeln, wurde aber zwischenzeitlich mit Hilfe eines Binokulars überprüft. Die Reaktion wurde mit P4Dig gestoppt, die Schnitte 5 min in DEPC-H₂O gewaschen, anschließend getrocknet und mit Fluormount (Serva) eingebettet.

2.2.14.4. Bestimmung der Neuronenzahl im AC

| 0,05 M Natriumazetatpuffer: | 6,8 g Natriumazetat auf 1000 ml H₂O |
| Kresylechtviolett: | 0,5 g Kresylviolett (Merck) auf 100 ml 0,05 M Natriumazetatpuffer |

Zum Abschätzen der Gesamtanzahl von Neuronen im AC in einem 20 µm dicken Schnitt wurden Nissl-Färbungen von Hirnschnitten angefertigt (2.2.14.1). Für die Analyse wurden Hirnschnitte von 3 untrainierten Tieren herangezogen. Das Gewebe wurde 30 min in 4 % (w/v) Paraformaldehyd fixiert. Anschließend erfolgte das Ansäuern für 5 min in 0,05 M Natriumazetatpuffer, pH 4,1, die Färbung mit 0,5 % Kresylechtviolett für 5 min und die Differenzierung für 3 min ebenfalls in 0,05 M Natriumazetatpuffer, pH 4,1. Dann wurden die Schnitte in einer aufsteigenden Alkoholreihe (50 %, 70 % und 96 % (v/v) Ethanol, je 2 min) entwässert und in Isopropanol/96 % (v/v) Ethanol (2 x 5 min) sowie Roticlear (3 x 5 min) gewaschen. Das Eindeckeln der Objekte erfolgte mittels Merckoglas (MERCK).

2.2.14.5. Auswertung der ISH und die Bestimmung der Neuronenzahl

3. Ergebnisse

3.1. Einfluss von Proteinsyntheseinhibitoren auf das FM-Diskriminierungsverhalten

In den sich anschließenden Abschnitten wird die Wirkung von bilateral in den AC verabreichten Proteinsynthaseinhibitoren auf die in nachfolgenden Trainingssitzungen zu beobachtende Diskriminierungsleistung beschrieben. Die so ermittelten Werte wurden mit den Verhaltensdaten
von Kontrolltieren, denen lediglich die als Vehikel dienende Lösung intrakortikal appliziert worden war, verglichen.

Zur Suppression der zerebralen Proteinsynthese kamen drei verschiedene Pharmaka zum Einsatz, die an unterschiedliche Schritte der Translation angreifen: Während ANI und EME die Elongation der Translation eukaryotischer mRNAs unterdrücken, interferiert RAPA vornehmlich mit der Initiierung der Translation bestimmter Subgruppen zellulärer mRNAs. Die verwendeten Dosierungen wurden von Literaturdaten abgeleitet, die einerseits belegen, dass sowohl ANI als auch EME in der Lage sind, die Proteinsynthese in verschiedenen Spezies und Hirnstrukturen zu unterdrücken (siehe Einleitung), und andererseits darauf hinweisen, dass 80 % Proteinsynthesehemmung ein kritischer Wert für die Störung von Mechanismen der Gedächtnisbildung zu sein scheinen (Flood et al., 1973; Flood et al., 1975; Davis und Squire, 1984). Die höchste Dosierung von ANI (113 mM) basiert auf Untersuchungen am Rattenhirn, die zeigen, dass die topische Injektion von 100 µg ANI pro Hemisphäre sowohl zu >80 % Proteinsynthesehemmung in kortikalen und hippocampalen Strukturen als auch zu amnestischen Effekten führt (Grecksch und Matthies, 1980; Rosenblum et al., 1993; Meiri und Rosenblum, 1998). Während des Verlaufs der Studien wurden jedoch Daten publiziert, denen zufolge wesentlich niedrigere Dosen von ANI für eine 80 %-ige Hemmung der Proteinsynthese in Nagerhirn hinreichend sind (Barea-Rodriguez et al., 2000). In einigen Experimenten wurde deshalb, wie angegeben, die Dosierung von ANI auf 66 mM gesenkt. Die Dosierung von EME geht auf Studien am Kükenhirn zurück, in denen eine lokal begrenzte Hemmung der Proteinsynthese nach topischer Injektion dieses Inhibitors nachgewiesen wurde (Patterson et al., 1986). Zur Wirkung intrazerebral verabreichten RAPAs konnte zu Beginn der Untersuchungen nicht auf publizierte Daten anderer Labore zurückgegriffen werden. Die eingesetzte Dosierung orientierte sich daher an Konzentrationen, die in in vitro-Kultursystemen Verwendung fanden (Jefferies et al., 1994; Casadio et al., 1999).

Tab. 3.1 Intrakortikale Substanzapplikationen und ihre zeitliche Relation zum Lernexperiment

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Konzentration</th>
<th>Zeitpunkt des Beginns der Injektion</th>
</tr>
</thead>
</table>
| ANI 113 mM (30 µg/µl) | 1) 5 min und 2 h nach 1. Training
2) 4 h und 6 h nach 1. Training
3) 5 min und 2 h nach dem 10. Training
4) 48 h und 46 h vor 1. Training |
| ANI 66 mM (17,5 µg) | 1) 5 min und 2 nach dem 6. Training |
| EME 15 mM (8,3 µg/µl) | 1) 5 min und 2 h nach dem 3. Training
2) 72 h und 70 h vor 1. Training |
| FK 506 + RAPA 7 µM + 66 nM | 1) 5 min (FK 506) + 30 min und 2 h (RAPA) nach dem 1. Training |
3.1.1. Methodische Vorarbeiten für die pharmakologischen Studien

3.1.1.1. FM-Diskriminierungslernen bei unbehandelten Gerbils

Unbehandelte Gerbils wurden an aufeinander folgenden Tagen trainiert und die Diskriminierungsleistung sowie alle weiteren Verhaltensparameter ausgewertet. Die Ergebnisse sind in Abb. 3.1 und Tab. 3.2 dargestellt. Über mehrere Tage war eine signifikante Steigerung der Diskriminierungsleistung der Gerbils mittels ANOVA nachweisbar ($F_{(3,11)} = 21,79; p < 0,001$). Die Anzahl der CR+ nimmt signifikant zu, aber nicht die der CR-. Im Vergleich zum initialen Training kann eine Abnahme der SA sowie der ITC während der folgenden Trainingssitzungen beobachtet werden. Der Anstieg der CR+ und die Abnahme der SA deuten auf eine Gewöhnung der Tiere an die Shuttle-Box und an die allgemeine Prozedur hin. Die Gerbils sind also in der Lage, sich an die experimentelle Situation zu erinnern.

Abb. 3.1 Diskriminierungsleistung (D) von unbehandelten Gerbils und von Gerbils, die einer Operation unterzogen worden waren und denen sterile Kochsalzlösung (NaCl) bilateral 5 min und 2 h nach dem initialen Training appliziert wurde.
Tab. 3.2 Über 4 Trainingstage erfasste Verhaltensparameter von unbehandelten Gerbils

<table>
<thead>
<tr>
<th>Sitzung</th>
<th>Substanz</th>
<th>CR+</th>
<th>CR-</th>
<th>ITC</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Tag</td>
<td>unbehandelt</td>
<td>3,83 ± 0,85</td>
<td>3,42 ± 0,76</td>
<td>4,00 ± 0,48</td>
<td>9,83 ± 1,16</td>
</tr>
<tr>
<td>2.Tag</td>
<td>unbehandelt</td>
<td>6,00 ± 1,16</td>
<td>4,33 ± 0,88</td>
<td>2,80 ± 0,68</td>
<td>3,92 ± 0,74</td>
</tr>
<tr>
<td>3.Tag</td>
<td>unbehandelt</td>
<td>10,33 ± 1,94</td>
<td>4,67 ± 0,85</td>
<td>1,40 ± 0,43</td>
<td>2,67 ± 0,61</td>
</tr>
<tr>
<td>4.Tag</td>
<td>unbehandelt</td>
<td>14,08 ± 1,99</td>
<td>4,67 ± 0,82</td>
<td>2,00 ± 0,84</td>
<td>2,00 ± 0,58</td>
</tr>
<tr>
<td>ANOVA</td>
<td></td>
<td>F(3,33) = 12,72</td>
<td>F < 1</td>
<td>F(3,33) = 11,81</td>
<td>F(3,33) = 19,03</td>
</tr>
<tr>
<td>Tag 1 - 4</td>
<td>Effekt des</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
</tr>
<tr>
<td>Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1.1.2. Einfluss von Operation und Narkose auf die Diskriminierungsleistung

Es konnte im Anschluss an zweifache Injektionen von Kochsalz nach dem Training kein Effekt auf die Diskriminierungsleistung (F < 1) und ebenfalls keine Interaktion zwischen Behandlung und Training festgestellt werden (F(3,60) = 1,13). Wie in Abb. 3.1 dargestellt, zeigten beide Gruppen eine signifikante Verbesserung ihrer Diskriminierungsleistung über alle 4 Trainingstage (F(3,60) = 26,17; p < 0,001). Für die Anzahl der CR+ wie auch die der CR- war ebenfalls kein Einfluss der Behandlung nachweisbar (Tab. 3.3).

Für die ITC wurde eine signifikante Interaktion zwischen Behandlung und Training ermittelt. Die nachfolgende Anwendung des t-Tests für die einzelnen Trainingstage erbrachte eine signifikant niedrigere Anzahl der ITCs der behandelten Tiere im Vergleich zu unbehandelten Gerbils im initialen Training (t(20) = 2,5; p < 0,025). Die SA änderte sich nicht.

Die Ergebnisse zeigen, dass die Operation zu einer in der Tendenz niedrigeren Gesamtaktivität der im Vergleich zu den unbehandelten Tieren am 1. Trainingstag führte, was aber nicht mit der Diskriminierungsleistung korrelierte. Die Verhaltensparameter der NaCl-behandelten Tiere unterschieden sich an den Tagen nach der Injektion nicht von denen unbehandelter Gerbils. Die Operation 24 h vor dem Training sowie die Narkose und die Injektion der Substanz unmittelbar nach dem initialen Training führten also nicht zu einer Beeinträchtigung der
Diskriminierungsleistung der Tiere im Vergleich zu unbehandelten Gerbils in den nachfolgenden Trainingssitzungen.

Tab. 3.3 Über 4 Trainingstage erfasste Verhaltensparameter von unbehandelten Gerbils und von Gerbils, die einer Operation unterzogen worden waren und denen 5 min und 2 h nach dem initialen Training Kochsalzlösung (NaCl) bilateral in den AC injiziert wurde.

<table>
<thead>
<tr>
<th>Sitzung</th>
<th>Substanz</th>
<th>CR+</th>
<th>CR-</th>
<th>ITC</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Tag</td>
<td>NaCl unbehandelt</td>
<td>1,50 ± 0,52</td>
<td>1,70 ± 0,47</td>
<td>2,10 ± 0,60</td>
<td>8,30 ± 1,54</td>
</tr>
<tr>
<td></td>
<td>NaCl unbehandelt</td>
<td>3,83 ± 0,85</td>
<td>3,42 ± 0,76</td>
<td>4,00 ± 0,48</td>
<td>9,83 ± 1,16</td>
</tr>
<tr>
<td>2.Tag</td>
<td>NaCl unbehandelt</td>
<td>7,10 ± 1,63</td>
<td>4,30 ± 0,79</td>
<td>1,95 ± 0,40</td>
<td>4,33 ± 1,12</td>
</tr>
<tr>
<td></td>
<td>NaCl unbehandelt</td>
<td>6,00 ± 1,16</td>
<td>4,33 ± 0,88</td>
<td>2,80 ± 0,68</td>
<td>3,92 ± 0,74</td>
</tr>
<tr>
<td>3.Tag</td>
<td>NaCl unbehandelt</td>
<td>8,30 ± 1,32</td>
<td>3,70 ± 0,79</td>
<td>1,25 ± 0,39</td>
<td>3,00 ± 0,75</td>
</tr>
<tr>
<td></td>
<td>NaCl unbehandelt</td>
<td>10,33 ± 1,94</td>
<td>4,67 ± 0,85</td>
<td>1,40 ± 0,43</td>
<td>2,67 ± 0,61</td>
</tr>
<tr>
<td>4.Tag</td>
<td>NaCl unbehandelt</td>
<td>11,80 ± 1,28</td>
<td>4,80 ± 0,70</td>
<td>1,33 ± 0,41</td>
<td>1,70 ± 0,37</td>
</tr>
<tr>
<td></td>
<td>NaCl unbehandelt</td>
<td>14,08 ± 1,99</td>
<td>4,67 ± 0,82</td>
<td>2,00 ± 0,84</td>
<td>2,00 ± 0,58</td>
</tr>
</tbody>
</table>

ANOVA

Tag 1 - 4

| Effekt des Trainings | F(3,60) = 22,95 | F(3,60) = 3,77 | F(3,60) = 3,69 | F(3,57) = 28,46 |
| | p < 0,001 | p < 0,025 | p < 0,025 | p < 0,001 |

| Training X Behandlung | F < 1 | F < 1 | F(3,60) = 3,74 | F < 1 |
| | | | p < 0,025 | |
3.1.1.3. Sensitivität der Diskriminierungsreaktion gegenüber unilateral rechts verabreichtem ANI

Das im folgenden aufgeführte Experiment sollte Aufschluss darüber geben, ob unilaterale Injektionen von ANI in den rechten AC nach dem initialen Training, die Konsolidierung der Diskriminierungsreaktion, gemessen an der Diskriminierungsleistung 24, 48 und 72 h später, beeinträchtigen.

113 mM ANI oder NaCl wurden unilateral 5 min und 2 h nach dem initialen Training in den rechten AC injiziert. Die Diskriminierungsleistung beider Gruppen ist in Abb. 3.2 dargestellt. Mittels ANOVA war kein signifikanter Einfluss der Behandlung (F < 1), ein signifikanter Effekt des Trainingstages (F\((3,66) = 23,33\); p < 0,001) und keine Interaktion zwischen beiden (F\((3,66) = 1,75\)) nachweisbar. Beide Gruppen verbesserten signifikant ihre Diskriminierungsleistung.

Verglichen mit Kontrollinjektionen haben unilaterale Injektionen von 113 mM ANI in den rechten AC unmittelbar und 2 h nach dem initialen Training also keinen Einfluss auf die Diskriminierungsleistung an den nachfolgenden Trainingstagen. Aufgrund dieses Resultats erfolgten die Injektionen in allen nachfolgenden Experimenten bilateral nach dem Training.

![Diagramm](#)

Abb. 3.2 Diskriminierungsleistung (D) von Gerbils, denen 5 min und 2 h nach dem initialen Training 113 mM ANI oder Kochsalzlösung (NaCl) unilateral in den rechten AC injiziert wurde.
3.1.2. **Injektion von ANI oder EME in den AC des Gerbils**

3.1.2.1. Injektion von ANI 5 min und 2 h nach dem initialen Training

ANI oder NaCl wurden bilateral 5 min und 2 h nach dem initialen Training in den AC injiziert. Die Tiere wurden an weiteren 3 Tagen trainiert.

Die Diskriminierungsleistung ANI-behandelter Gerbils im Vergleich zu Kontrolltieren ist in Abb. 3.3a dargestellt. Die ANOVA für die Diskriminierungsleistung über alle Trainingstage erbrachte einen signifikanten Effekt der Behandlung ($F_{(1,19)} = 5,81; p < 0,05$) und einen signifikanten Einfluss des Trainingstages ($F_{(3,57)} = 8,51; p < 0,001$) aber keine Interaktion der beiden Parameter ($F_{(3,57)} = 1,49$). Beide Gruppen verbesserten also ihre Diskriminierungsleistung, aber die ANI-behandelten Gerbils zeigten, verglichen mit den Kontrolltieren, über alle Tage eine verminderte Trainingsleistung.

Abb. 3.3 Diskriminierungsleistung (D) von Tieren, denen 5 min und 2 h nach dem initialen Training 113 mM ANI oder Kochsalzlösung (NaCl) bilateral in den AC appliziert wurde. a) Diskriminierungsleistung über alle 4 Trainingssitzungen; b) die vier Trainingstage in Block A und B unterteilt; c) über Block A und B Mittelwerte der Trainingsläufe der Tage 2 bis 4.

*- signifikanter Unterschied zwischen den Behandlungsgruppen (t-Test; $p < 0,05$)
º- signifikanter Unterschied zwischen den Blöcken (t-Test; $p < 0,05$)

Um dieses Ergebnis weiter zu analysieren, wurde jede Trainingssitzung in zwei Blöcke unterteilt. Block A beinhaltet die Werte der ersten 24 Trainingsläufe und Block B die der letzten 36 (Abb. 3.3b). ANOVA über die Trainingstage nach der Injektion wies einen signifikanten Effekt der Behandlung ($F_{(1,19)} = 11,36; p < 0,005$) aber keinen der Blöcke ($F_{(1,19)} = 2,64$) nach. Die
Interaktion zwischen beiden erreichte annähernd die Signifikanzschwelle \((F_{(1,19)} = 4,00; p = 0,06) \). Das könnte darauf hinweisen, dass sich die pharmacologische Behandlung ungleichmäßig auf die in Block A und Block B der nachfolgenden Trainingssitzungen gemessene Diskriminierungsleistung auswirkte. Diese unterschiedliche Diskriminierungsleistung ist in Abb. 3.3b dargestellt. Die ANI-behandelten Gerbils steigerten ihre Diskriminierungsleistung innerhalb eines Trainings, zeigten aber eine sehr geringe Diskriminierungsleistung zu Beginn einer jeden Trainingssitzung. Für die Kontrolltiere konnte dieses Muster nicht festgestellt werden. Am 3. und 4. Trainingstag unterschieden sich die beiden Behandlungsgruppen signifikant in Block A nicht jedoch in Block B. Ein ähnliches Resultat wurde erhalten, wenn die Mittelwerte der Blöcke über die Trainingstage nach der Injektion gebildet wurden, wie in Abb. 3.3c dargestellt.

Für die ANI-behandelten Tiere war eine signifikant schlechtere Diskriminierungsleistung in Block A im Vergleich zu Block B und eine signifikant schlechtere Diskriminierungsleistung im Vergleich zu den Kontrolltieren in Block A und B nachweisbar. Im Gegensatz dazu konnten keine Unterschiede von Block B der ANI-behandelten Gerbils zu Block A und B der NaCl-behandelten Gerbils ermittelt werden. Bei den NaCl-behandelten Tieren war kein Unterschied zwischen Block A und B festzustellen. Im Gegensatz zu den ANI-behandelten Gerbils verbesserten die Kontrolltiere ihre Leistung zwischen den einzelnen Trainingstagen.

Um Nebenwirkungen von bilateral appliziertem ANI auf sensorische und motorische Systeme zu untersuchen, die mit der Diskriminierungsleistung interferieren könnten, wurden weitere Verhaltensparameter für die beiden Behandlungsgruppen überprüft (Tab. 3.4).

Tab. 3.4 Über 4 Trainingstage erfasste Verhaltensparameter von Gerbils, denen 5 min und 2 h nach dem initialen Training 113 mM ANI oder Kochsalzlösung (NaCl) bilateral in den AC injiziert wurde.

3.1.2.2. Injektion von ANI 4 h und 6 h nach dem initialen Training

In verschiedenen Spezies und Lernparadigmen konnte gezeigt werden, dass zur Konsolidierung eines Langzeitgedächtnisses eine zweite Phase intakter Proteinsynthese erforderlich sein kann, die mehrere Stunden nach dem Training beginnt (Übersicht siehe Stork und Welzl, 1999). In Anlehnung an Versuche von Grecksch und Matthies (1980) wurde im nachfolgenden Experiment 4 und 6 h nach Beendigung des initialen Trainings 113 mM ANI oder NaCl bilateral in den AC appliziert. Die Gerbils wurden 3 weitere Tage trainiert. Für die Diskriminierungsleistung (Abb. 3.4) war ein signifikanter Einfluss der Behandlung ($F_{(1,18)} = 25,28; p < 0,001$), des Trainingstages ($F_{(3,54)} = 16,51; p < 0,001$) und eine Interaktion zwischen beiden ($F_{(3,54)} = 3,78; p < 0,025$) nachweisbar. Beide Gruppen zeigten also eine Verbesserung der Diskriminierungsleistung über alle Tage, die jedoch in der ANI-behandelten Gruppe im Vergleich zur Kontrollgruppe verzögert war.

Abb. 3.4 Diskriminierungsleistung (D) von Tieren, denen 4 h und 6 h nach dem initialen Training 113 mM ANI oder Kochsalzlösung (NaCl) bilateral in den AC appliziert wurde.

*- signifikanter Unterschied zwischen den Behandlungsgruppen (t-Test; $p < 0,05$)
3.1.2.3. Einfluss von ANI auf eine vollständig etablierte FM-Diskriminierungsreaktion

Die Befunde sprechen dafür, dass ANI per se sowie eine Hemmung der zerebralen Proteinsynthese weder Systeme beeinträchtigten, die für die Ausführung der Diskriminierungsreaktion notwendig sind, noch mit Mechanismen interferieren, die in die Retention, Abrufung und Rekonsolidierung einer bereits vor der Injektion etablierten FM-Diskriminierungsreaktion involviert sind.

Abb. 3.5 Diskriminierungsleistung (D) von Tieren, denen 5 min und 2 h nach dem 10. Training 113 mM ANI oder Kochsalzlösung (NaCl) bilateral in den AC appliziert wurde.
3.1.2.4. Einfluss von ANI auf eine partiell etablierte FM-Diskriminierungsreaktion

In dem im folgenden beschriebenen Versuch wurde der Einfluss von ANI auf Prozesse, die am Hinzufügen neuer Information zu einer bereits teilweise etablierten Reaktion beteiligt sind, untersucht. Dazu wurden Gerbils in täglichen Sitzungen trainiert, bis sie im Mittel ca. 30 % der möglichen Diskriminierungsleistung erreicht hatten. Die Operation erfolgte nach der 6. Trainingssitzung. Am folgenden Tag, also 5 min und 2 h nach dem 7. Training, erfolgte die Injektion von 66 mM ANI bzw. von NaCl.

Die Diskriminierungsleistung der ANI-behandelten Gerbils und der Kontrolltiere vom 6. bis zum 11. Trainingstag ist in Abb. 3.6 dargestellt. Mittels ANOVA über die 7. bis 11. Trainingssitzung konnte ein signifikanter Einfluss der Behandlung ($F_{(1,10)} = 6,66; p < 0,05$) sowie des Trainingstages ($F_{(4,40)} = 3,94; p < 0,01$), aber keine signifikante Interaktion zwischen beiden ($F_{(4,40)} = 1,24$) festgestellt werden.

![Graphische Darstellung](image)

Abb. 3.6 Einfluss von ANI auf eine partiell etablierte FM-Diskriminierungsreaktion. Den Tieren wurde 5 min und 2 h nach dem 7. Training 66 mM ANI oder Kochsalzlösung (NaCl) bilateral in den AC appliziert. *- signifikanter Unterschied zwischen den Behandlungsgruppen (t-Test; $p < 0,05$)

Gemessen über mehrere Trainingstage waren die ANI-behandelten Gerbils wie auch die Kontrollen also in der Lage, ihre Diskriminierungsleistung zu verbessern. Die Steigerung der ANI-behandelten Tiere war jedoch im Vergleich zur Kontrollgruppe verzögert. Eine Analyse der einzelnen Trainingstage mittels t-Test erbrachte eine signifikant schlechtere

3.1.2.5. Einfluss von EME auf eine partiell etablierte FM-Diskriminierungsreaktion

Um zu erhärten, dass der Einfluss von ANI auf die Diskriminierungsleistung auf eine Inhibition der Proteinsynthese zurückzuführen ist, erfolgte die Applikation eines weiteren Inhibitors der Translation, EME. Wie im vorhergehenden Versuch wurden die Gerbils solange trainiert, bis sie im Mittel ca. 30 % der maximal erreichbaren Diskriminierungsrate zeigten. Die Operation erfolgte nach der 3. Trainingssitzung. Am nächsten Tag wurden 15 mM EME oder NaCl 5 min und 2 h nach dem Training bilateral in den AC appliziert.

Die Diskriminierungsleistung der beiden Behandlungsgruppen ist in Abb. 3.7 dargestellt. Die ANOVA für die Diskriminierungsleistung über die Tage 4 bis 7 erbrachte keinen signifikanten Einfluss der Behandlung (F < 1) aber einen signifikanten Effekt des Trainingstages (F(3,42) = 2,96; p < 0,05) sowie eine signifikante Interaktion zwischen beiden (F(3,42) = 3,04; p < 0,05).

![Diagramm](image.png)

Abb. 3.7 Einfluss von EME auf eine partiell etablierte FM-Diskriminierungsreaktion. Den Tieren wurde 5 min und 2 h nach dem 4. Training 15 mM EME oder Kochsalzlösung (NaCl) bilateral in den AC appliziert.

*- signifikanter Unterschied zwischen den Behandlungsgruppen (t-Test; p < 0,05)
Die Interaktion könnte darauf hinweisen, dass sich die Behandlungen unterschiedlich auf die in den nachfolgenden Trainingssitzungen gemessene Verbesserung der Diskriminierungsleistung auswirkten. Tatsächlich waren die Kontrolltiere \(F(3,24) = 5,24; \ p < 0,01 \), nicht aber die EME-behandelten Gerbils \(F < 1 \), in der Lage, ihre Diskriminierungsleistung zu verbessern. Keine der Gruppen wies jedoch im Vergleich zum vor der Behandlung gezeigten Diskriminierungsniveau eine Verschlechterung auf.

Die über Trainingstage 4 – 7 erfassten Verhaltensparameter beider Gruppen sind in Tab. 3.5 dargestellt. Daraus wird deutlich, dass die unterschiedlichen Diskriminierungsleistungen der Behandlungsgruppen im wesentlichen auf unterschiedliche CR-Raten zurückzuführen sind. Die Behandlung mit EME übte auf keinen der weiteren gemessenen Verhaltensparameter einen signifikanten Einfluss aus.

Zusammengenommen zeigen die Befunde, dass zwei unterschiedliche Proteinsynthesehemmstoffe, ANI und EME, in gleichsinniger Weise die Verbesserung einer partiell etablierten FM-Diskriminierungsreaktion beeinträchtigten. Die bereits vor der Behandlung erreichte Diskriminierungsleistung blieb dabei erhalten.

Tab. 3.5 Über 5 Trainingstage erfasste Verhaltensparameter von Gerbils, denen 5 min und 2 h nach dem 4. Training 15 mM EME oder Kochsalzlösung bilateral in den AC injiziert wurde.

<table>
<thead>
<tr>
<th>Sitzung</th>
<th>Substanz</th>
<th>CR+</th>
<th>CR-</th>
<th>ITC</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.Tag</td>
<td>EME</td>
<td>14,50 ± 2,81</td>
<td>3,70 ± 1,45</td>
<td>1,44 ± 0,47</td>
<td>3,30 ± 0,79</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td>14,09 ± 2,31</td>
<td>4,09 ± 1,19</td>
<td>2,88 ± 1,09</td>
<td>4,56 ± 1,14</td>
</tr>
<tr>
<td>4.Tag</td>
<td>EME</td>
<td>13,70 ± 1,99</td>
<td>2,00 ± 0,65</td>
<td>0,80 ± 0,33</td>
<td>0,70 ± 0,26</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td>12,45 ± 2,10</td>
<td>1,36 ± 0,45</td>
<td>1,36 ± 0,34</td>
<td>1,00 ± 0,38</td>
</tr>
<tr>
<td>5.Tag</td>
<td>EME</td>
<td>20,60 ± 2,10</td>
<td>5,00 ± 0,63</td>
<td>4,30 ± 1,45</td>
<td>3,30 ± 0,62</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td>17,36 ± 2,26</td>
<td>2,36 ± 0,47</td>
<td>3,27 ± 0,94</td>
<td>1,82 ± 0,50</td>
</tr>
<tr>
<td>6.Tag</td>
<td>EME</td>
<td>18,40 ± 1,48</td>
<td>4,50 ± 0,85</td>
<td>4,80 ± 2,66</td>
<td>4,70 ± 1,54</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td>19,18 ± 2,12</td>
<td>2,18 ± 0,42</td>
<td>3,36 ± 0,77</td>
<td>2,45 ± 0,69</td>
</tr>
<tr>
<td>7.Tag</td>
<td>EME</td>
<td>19,90 ± 1,07</td>
<td>6,00 ± 1,02</td>
<td>4,00 ± 1,06</td>
<td>5,00 ± 1,06</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
<td>23,27 ± 1,80</td>
<td>2,73 ± 0,49</td>
<td>3,82 ± 0,64</td>
<td>3,55 ± 0,86</td>
</tr>
<tr>
<td>ANOVA Tag 4 - 7</td>
<td>Behandlungseffekt</td>
<td>F < 1</td>
<td>(F(1,14) = 7,18)</td>
<td>F < 1</td>
<td>(F(1,1) = 1,65)</td>
</tr>
<tr>
<td></td>
<td>Effekt des Trainings</td>
<td>(F(3,42) = 5,75)</td>
<td>(F(3,42) = 5,75)</td>
<td>(F(3,42) = 2,51)</td>
<td>(F(3,42) = 5,9)</td>
</tr>
<tr>
<td></td>
<td>Training X Behandlung</td>
<td>(F(3,42) = 2,28)</td>
<td>(F(3,42) = 2,11)</td>
<td>F < 1</td>
<td>(F(3,42) = 1,54)</td>
</tr>
</tbody>
</table>
3.1.2.6. **Injektion von ANI oder EME mehrere Tage vor dem initialen Training**

Bilaterale Injektionen von 113 mM ANI oder NaCl erfolgten 48 h und 46 h vor dem initialen Training. Es folgten 2 weitere Trainingssitzungen. Wie in Abb. 3.8a dargestellt, war die Diskriminierungsleistung der ANI-behandelten Gerbils im Vergleich zu den Kontrolltieren nicht beeinträchtigt. Die ANOVA für die Diskriminierungsleistung erbrachte keinen signifikanten Einfluss der Behandlung (F < 1), einen signifikanten Effekt des Trainingstages (F\(_{2,18}\) = 6,27; p < 0,01) und keine Interaktion zwischen beiden (F < 1).

Ähnliche Ergebnisse waren zu verzeichnen, wenn 15 mM EME oder NaCl 72 h und 70 h vor dem initialen Training appliziert wurden. Die Diskriminierungsleistung der Gerbils ist in Abb. 3.8b dargestellt. Die ANOVA über beide Trainingssitzungen erbrachte keinen Einfluss der Behandlung (F < 1), einen Effekt des Trainingstages (F\(_{1,6}\) = 6,92; p < 0,025) und keine Interaktion beider Parameter (F < 1).

Abb. 3.8 Diskriminierungsleistung (D) von Tieren denen a) 48 und 46 h vor dem ersten Training 113 mM ANI oder Kochsalzlösung (NaCl) oder b) 72 und 70 h vor dem initialen Training 15 mM EME oder Kochsalzlösung (NaCl) bilateral in den AC appliziert wurde.
Weder die Hemmstoffe selbst noch die Inhibierung der zerebralen Proteinsynthese verursachen also einen lang anhaltenden toxischen Effekt, der als Ursache für die schlechtere Diskriminierungsleistung der Tiere in Betracht zu ziehen wäre, die bei der Applikation der Hemmstoffe nach einem Akquisitionstraining zu beobachten war.

3.1.2.7. Zusammenfassung der Wirkung von bilateral in den AC applizierten Proteinsynthaseinhibitoren

Die Applikation eines zweiten Proteinsynthaseinhibitors, EME, zeigte eine ähnliche Wirkung. Keiner der Hemmstoffe beeinträchtigte das FM-Diskriminierungslernen, wenn er einige Tage vor dem initialen Training appliziert wurde.

3.1.3. **Injektion von RAPA und FK506 in den AC des Gerbils**

Die gezeigte Abhängigkeit der Ausbildung eines Langzeitgedächtnisses für die FM-Diskriminierungsreaktion von intakter zerebraler Proteinsynthese berechtigte einerseits zu weiterführenden Untersuchungen der Genexpression auf Ebene der Transkription im AC, wie sie im zweiten Teil der vorliegenden Arbeit beschrieben werden. Andererseits führte die unerwartet lange über mehrere Tage nachweisbare Beeinträchtigung des Langzeitgedächtnisses nach einmaliger Hemmung der kortikalen Proteinsynthese zu der Vermutung, dass der Langzeitgedächtnisbildung im verwendeten Paradigma verschiedene Proteinsynthese-abhängige Prozesse zugrunde liegen könnten.

Zur Untersuchung dieser Frage wurde in Zusammenarbeit mit Dr. Horst Schicknick eine weitere verhaltenspharmakologische Studie unter Verwendung des bakteriellen Makrolids RAPA durchgeführt. Um zu prüfen, ob etwaige amnestische Wirkungen des RAPA über den vermuteten Signalweg unter Beteiligung von FKBP12 und mTOR vermittelt werden, kam ein zweites bakterielles Makrolid, FK506, zum Einsatz. FK506 konkurriert mit RAPA um die Bindung an FKBP12. Wird es im Überschuss noch vor der Applikation von RAPA verabreicht, so sollte also FK506 solche Wirkungen von RAPA, die auf einer Beeinträchtigung der Proteinsynthese beruhen, unterdrücken können.

In dem nachfolgend beschriebenen Experiment wurden die Pharmaka nach der initialen Trainingssitzung zum Erwerb einer FM-Diskriminierungsreaktion bilateral in den AC verabreicht.

Gerbils (*n = 7*), die während dieser ersten Sitzung mehr CR- als CR+ absolvierten, wurden als Nichtlerner klassifiziert und nicht weiter verwendet. Die verbleibenden Versuchstiere erhielten je 3 Injektionen in unterschiedlicher zeitlicher Relation zum Training (Tab. 3.6). Unmittelbar nach Beendigung des Trainings wurden entweder Vehikel (NaCl + 0,03 ‰ Ethanol) oder FK506 verabreicht; 30 min und 2 h später erhielten dieselben Versuchstiere entweder Vehikel oder RAPA. Das Experiment setzte sich also aus 4 Versuchsgruppen zusammen, die entweder nur Kontrollinjektionen erhielten oder die Wirkstoffe FK506 und RAPA alleine oder in Kombination.
Ergebnisse

Die FM-Diskriminierungsleistung der Versuchstiere wurde an drei aufeinander folgenden Tagen nach der Injektion ermittelt.

Tab. 3.6 Darstellung der Behandlungsgruppen und der Zeitpunkte der Injektion der Substanzen in den AC der Gerbils nach dem initialen Training; FK FK506; R RAPA; N NaCl

<table>
<thead>
<tr>
<th>Bezeichnung der Behandlungsgruppen</th>
<th>1. Injektion 5 min nach Training</th>
<th>2. Injektion 30 min nach Training</th>
<th>3. Injektion 120 min nach Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>FK-R-R (n = 12)</td>
<td>6 µM FK 506</td>
<td>60 nM RAPA</td>
<td>60 nM RAPA</td>
</tr>
<tr>
<td>V-V-V (n = 5)</td>
<td>Vehikel</td>
<td>Vehikel</td>
<td>Vehikel</td>
</tr>
<tr>
<td>FK-V-V (n = 4)</td>
<td>6 µM FK 506</td>
<td>Vehikel</td>
<td>Vehikel</td>
</tr>
<tr>
<td>V-R-R (n = 9)</td>
<td>Vehikel</td>
<td>60 nM RAPA</td>
<td>60 nM RAPA</td>
</tr>
</tbody>
</table>

Abb. 3.9 In a) ist Diskriminierungsleistung (D) über 4 Trainingstage und in b) die Differenz zwischen der Diskriminierungsleistung des 3. Training und 2. Training dargestellt. Den Tieren wurde unmittelbar, 30 min und 2 h nach dem initialen Training 6 µM FK506, 60 nM RAPA oder Vehikel (NaCl + 0,03‰ Ethanol) bilateral in den AC appliziert, wie nochmals in der Legende in Abb. b) gezeigt. FK FK506; N NaCl; R RAPA

ANOVA der Diskriminierungsleistung der pharmakologisch unterschiedlich behandelten Gruppen über alle Trainingstage ließ keinen signifikanten Einfluss der Behandlung (F(3,26) = 1,56), aber einen signifikanten Effekt des Trainingstages (F(3,78) = 63,16; p < 0,001) und eine signifikante Interaktion zwischen beiden (F(9,78) = 3,01; p < 0,005) erkennen. Die signifikante Interaktion zwischen Behandlung und Trainingstag lässt Unterschiede in den Lernkurven der einzelnen Behandlungsgruppen vermuten. Tatsächlich weist der in Abb. 3.9a dargestellte Interaktionsplot solche Unterschiede auf. Am augenscheinlichsten ist die Diskrepanz zwischen
der von Tag 2 nach Tag 3 abfallenden Diskriminierungsleistung der Gruppe, die nur RAPA erhalten hat, und der im selben Zeitraum ansteigenden Diskriminierungsleistung der anderen Behandlungsgruppen.

In Tab. 3.7 ist zu sehen, dass für die CR+ ebenfalls kein signifikanter Einfluss der Behandlung aber ein signifikanter Effekt des Trainingstages und eine Interaktion zwischen beiden nachweisbar war. Für alle weiteren Verhaltensparameter konnte kein signifikanter Effekt der Behandlung oder eine Interaktion zwischen Training und Behandlung ermittelt werden.

Um das für die Diskriminierungsleistung beschriebene Phänomen näher zu untersuchen, wurden die Daten des 2. und 3. Trainingstags gesondert analysiert. Mittels ANOVA über diese Tage konnten keine Effekte der Behandlung (F(3,26) = 2,42) und des Trainingstages (F(1,26) = 2,66), aber wiederum eine signifikante Interaktion zwischen beiden (F(3,26) = 3,04; p < 0,05) nachgewiesen werden. In Abb. 3.9b sind die zwischen Trainingstag 2 und 3 registrierten Veränderungen der Diskriminierungsleistung zusammengefasst. Es wird deutlich, dass die RAPA-behandelten Tiere im Gegensatz zu allen anderen Behandlungsgruppen eine im Mittel negative Veränderung aufweisen. Ein post-hoc-Vergleich der Gruppen mittels Fisher's PLSD-Test zeigte, dass die Gruppe, die nach dem initialen Training ausschließlich mit RAPA behandelt wurde, sich signifikant (p < 0,05) von allen anderen Behandlungsgruppen unterschied.

Zusammenfassend kann man feststellen, dass ausschließlich die Tiere, welche nur RAPA erhalten hatten, eine Verschlechterung in ihrer Diskriminierungsleistung von 2. zum 3. Trainingstag zeigten. Im Gegensatz zur Wirkung von ANI war eine amnestische Wirkung des RAPA nicht bereits nach 24 h, sondern erst nach 48 h nachweisbar. Wenn FK506 vor der Applikation von RAPA in den AC des Gerbils verabreicht wurde, konnte der Effekt des RAPA auf die Diskriminierungsleistung 48 h nach der Injektion unterdrückt werden. Wenn FK506 alleine gegeben wurde, war kein Einfluss auf die Diskriminierungsleistung detektierbar.
Tab. 3.7 Darstellung aller weiteren Parameter zum Kompetitionsversuch von FK506 und 60 mM Rapamycin. In der Tabelle sind in die Werte sowie die ANOVA aller Behandlungsgruppen zusammengefasst. FK FK506; N NaCl; R RAPA

<table>
<thead>
<tr>
<th>Sitzung</th>
<th>Substanz</th>
<th>CR+</th>
<th>CR-</th>
<th>ITC</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Tag</td>
<td>FK-R-R</td>
<td>6,67 ± 1,43</td>
<td>1,83 ± 0,41</td>
<td>3,83 ± 1,09</td>
<td>10,00 ± 1,18</td>
</tr>
<tr>
<td></td>
<td>V-V-V</td>
<td>6,00 ± 1,14</td>
<td>2,40 ± 1,12</td>
<td>6,20 ± 2,63</td>
<td>5,80 ± 1,80</td>
</tr>
<tr>
<td></td>
<td>FK-V-V</td>
<td>2,00 ± 0,71</td>
<td>1,00 ± 0,41</td>
<td>1,50 ± 0,50</td>
<td>6,75 ± 2,46</td>
</tr>
<tr>
<td></td>
<td>V-R-R</td>
<td>5,89 ± 1,34</td>
<td>2,22 ± 0,68</td>
<td>4,11 ± 1,59</td>
<td>9,22 ± 1,89</td>
</tr>
<tr>
<td>2.Tag</td>
<td>FK-R-R</td>
<td>17,08 ± 2,20</td>
<td>5,50 ± 0,90</td>
<td>4,75 ± 0,93</td>
<td>5,50 ± 0,60</td>
</tr>
<tr>
<td></td>
<td>V-V-V</td>
<td>19,80 ± 3,34</td>
<td>5,80 ± 1,69</td>
<td>4,60 ± 1,12</td>
<td>5,80 ± 1,50</td>
</tr>
<tr>
<td></td>
<td>FK-V-V</td>
<td>21,75 ± 2,69</td>
<td>4,50 ± 0,87</td>
<td>3,00 ± 1,08</td>
<td>2,50 ± 0,29</td>
</tr>
<tr>
<td></td>
<td>V-R-R</td>
<td>24,33 ± 1,60</td>
<td>5,22 ± 1,14</td>
<td>5,78 ± 1,71</td>
<td>7,33 ± 1,96</td>
</tr>
<tr>
<td>3.Tag</td>
<td>FK-R-R</td>
<td>16,83 ± 2,22</td>
<td>3,17 ± 0,67</td>
<td>2,50 ± 0,57</td>
<td>4,33 ± 1,18</td>
</tr>
<tr>
<td></td>
<td>V-V-V</td>
<td>20,40 ± 1,96</td>
<td>2,20 ± 0,86</td>
<td>1,20 ± 0,73</td>
<td>3,40 ± 1,03</td>
</tr>
<tr>
<td></td>
<td>FK-V-V</td>
<td>24,50 ± 1,76</td>
<td>3,00 ± 0,71</td>
<td>2,00 ± 0,71</td>
<td>2,25 ± 0,63</td>
</tr>
<tr>
<td></td>
<td>V-R-R</td>
<td>19,89 ± 1,48</td>
<td>4,11 ± 0,68</td>
<td>3,56 ± 0,44</td>
<td>4,00 ± 0,73</td>
</tr>
<tr>
<td>4.Tag</td>
<td>FK-R-R</td>
<td>17,67 ± 1,87</td>
<td>3,25 ± 0,58</td>
<td>1,83 ± 0,41</td>
<td>3,58 ± 0,67</td>
</tr>
<tr>
<td></td>
<td>V-V-V</td>
<td>25,60 ± 1,44</td>
<td>4,60 ± 1,03</td>
<td>2,60 ± 1,54</td>
<td>2,60 ± 0,60</td>
</tr>
<tr>
<td></td>
<td>FK-V-V</td>
<td>23,00 ± 2,83</td>
<td>2,25 ± 0,25</td>
<td>0,00 ± 0,00</td>
<td>2,00 ± 0,91</td>
</tr>
<tr>
<td></td>
<td>V-R-R</td>
<td>20,56 ± 1,88</td>
<td>4,44 ± 1,09</td>
<td>2,44 ± 0,58</td>
<td>3,00 ± 0,96</td>
</tr>
</tbody>
</table>

ANOVA Tag1 - 4

<table>
<thead>
<tr>
<th>Behandlungseffekt</th>
<th>Effekt des Trainings</th>
<th>Training X Behandlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behandlungseffekt</td>
<td>F(3,26) = 1,38</td>
<td>F < 1</td>
</tr>
<tr>
<td>Effekt des Trainings</td>
<td>F(3,78) = 82,89 p < 0.001</td>
<td>F(3,78) = 9,32 p < 0.001</td>
</tr>
<tr>
<td>Training X Behandlung</td>
<td>F(9,78) = 2,89 p < 0.01</td>
<td>F < 1</td>
</tr>
</tbody>
</table>

3.1.4. Zusammenfassung der Effekte bilateraler Injektionen in den AC des Gerbils

Eine Zusammenfassung der Experimente ist in Tab. 3.8 dargestellt.

Tab. 3.8 Zusammenfassung der Effekte von bilateraler Injektion von ANI, EME und RAPA in den AC im Vergleich zu NaCl oder Vehikel. 1) Veränderungen der Diskriminierungsleistung zwischen dem 1. und 2. Trainingstag; 2) Veränderungen der Diskriminierungsleistung zwischen dem 2. und 3. Trainingstag; 0) keine Veränderungen

<table>
<thead>
<tr>
<th>Substanz</th>
<th>5 min und 2 h nach initialem Training</th>
<th>4 h und 6 h nach initialem Training</th>
<th>5 min und 2 h nach letztem Vortraining</th>
<th>24 h bis 72 h vor initialem Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>↑↑1</td>
<td>↑↑1</td>
<td>↑</td>
<td>↑↑1</td>
</tr>
<tr>
<td>ANI</td>
<td>01</td>
<td>01</td>
<td>0</td>
<td>↑↑1</td>
</tr>
<tr>
<td>EME</td>
<td>01</td>
<td>01</td>
<td>0</td>
<td>↑↑1</td>
</tr>
<tr>
<td>RAPA</td>
<td>↑↑1</td>
<td>↓2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2. Analysen zur Veränderung der Genexpression nach FM-Diskriminierungstraining

Die bisher dargestellten Daten sprechen dafür, dass die Ausbildung eines Langzeitgedächtnisses für die FM-Diskriminierungsreaktion Proteinsynthese-abhängige Prozesse im AC des Gerbils sowohl unmittelbar als auch zwischen ca. 4 - 8 h nach Akquisition erfordert. Dadurch wurde die Frage aufgeworfen, ob es in diesem Zeitraum auch zu Änderungen in der Genexpression auf der Ebene der Transkription im AC kommt. Die für die folgenden Untersuchungen erforderlichen Gewebeproben wurden 5 h nach Akquisition der FM-Diskriminierungsreaktion entnommen, also zu einem Zeitpunkt, an dem in anderen Lernparadigmen und Spezies erhöhte zerebrale Proteinsynthese nachgewiesen werden konnte (Übersicht siehe Stork und Welzl, 1999).

3.2.1. Analyse von Arc (Arg3.1)-mRNA mittels in situ-Hybridisierung

Die Maus-spezifische Arc-Sonde für die ISH wurde freundlicherweise von PD Dr. Dirk Montag (IfN) zur Verfügung gestellt. In Vorversuchen, die dankenswerterweise von Frau Dr. Montag-Sallaz durchgeführt wurden, konnte gezeigt werden, dass die Sonde auch für den spezifischen Nachweis der Arc-mRNA im Gerbil geeignet ist.

In der Abb. 3.10A-G sind Beispiele für die ISH mit der antisense-Arc-cRNA-Sonde dargestellt. Es konnte gezeigt werden, dass Arc stark im Kortex exprimiert wird, besonders in den Schichten II – VI. In der Hippokampusformation war die stärkste Expression von Arc in CA1, etwas schwächer in CA2 und CA3 und die geringste Expression war im Gyrus dentatus nachweisbar.
Ergebnisse

Arc ist schwächer im Caudatoputamen und in der Körnerzellschicht sowie der Purkinjezellschicht des Cerebellums exprimiert. Eine ähnliche Verteilung der Arc-mRNA wurde für das Gehirn der Ratte und Maus beschrieben (Link et al., 1995; Lyford et al., 1995; Montag-Sallaz et al., 1999).

Abb. 3.10 In situ-Hybridisierung zur Detektion von Arc-mRNA am Horizontalschnitt des Gerbils: A Gesamtansicht, B Hippokampus, C Cerebellum, D vergrößerte Ansicht des Cerebellums, E entorhinaler Kortex, F auditorischer Kortex, G vergrößerte Ansicht des auditorischen Kortex. Cb Cerebellum; CPu Caudatoputamen; HF Hippokampusformation; CA1, CA2 und CA3 Hippokampusareale; DG Gyrus dentatus; Ent entorhinaler Kortex; S Subiculum; GCL Körnerzellschicht; PCL Purkinjezellschicht; ML Molekularschicht. Balken in C, D, F und G = 250 µm, in E und H = 50 µm.

Das Ergebnis der quantitativen Auswertung der Hirnschnitte trainierter und untrainierter Gerbils ist in Abb. 3.11 dargestellt. Bei Betrachtung beider Hemisphären war im Vergleich zu untrainierten Tieren eine Erhöhung der Zahl Arc-mRNA positiver Zellen 5 h nach Akquisition
Ergebnisse

der FM-Diskriminierungsreaktion im AC nachweisbar \(t_{12} = 2,49; p < 0,05 \). Beim Vergleich innerhalb der Hemisphären des AC verfehlte der trainingsbedingte Unterschied in der Expression von Arc-mRNA die Signifikanzschwelle. Unterschiede zwischen dem rechten und linken AC waren weder bei trainierten Gerbils noch in der Kontrollgruppe nachweisbar. Im somatosensorischen Kortex (SCo) erreichte die in der Tendenz erkennbaren trainingsbedingten Unterschiede in der Zahl der Arc-mRNA-exprimierenden Zellen nicht das Niveau statistischer Signifikanz.

Im AC des Gerbils kommt es also 5 h nach FM-Diskriminierungstraining zu einer erhöhten Expression von Arc-mRNA.

[Diagramm: Abb. 3.11 Quantifizierung von Arc-mRNA-exprimierenden Zellen im AC und SCo von untrainierten Gerbils und von Gerbils, die 5 h vor Dekapitation einem FM-Diskriminierungstraining unterzogen worden waren. Es sind jeweils die Ergebnisse der rechten und linken Hemisphäre sowie die Mittelwerte aus beiden dargestellt. * - signifikanter Unterschied zwischen trainierten und untrainierten Tieren (t-Test; p < 0,05)]

3.2.2. Subtraktive Hybridisierung

Wie aus dem vorangegangenen Kapitel ersichtlich, kommt es 5 h FM-Diskriminierungstraining zu Veränderungen in der Genexpression im AC des Gerbils.

Um weitere mRNAs zu detektieren, deren Expression 5 h nach FM-Diskriminierungstraining verändert ist, wurde die Methode der SSH gewählt. Das Prinzip dieser Methode ist im Kapitel "Material und Methoden" näher erläutert.

Das Ergebnis der SSH ist in Abb. 3.12 dargestellt. Nach Beendigung der zweiten Amplifikation mittels PCR wurden die subtrahierte cDNA (Bahn 1), die subtrahierte Kontroll-cDNA
(Skelettmuskel des Menschen, Bahn 3) und eine unsubtrahierte _tester_-Kontrolle (Bahn 2) auf ein Gel aufgetragen. Für die subtrahierte Skelettmuskel-cDNA konnte das laut Angaben des Herstellers erwartete Bandenmuster zwischen 200 bp und 1,3 kb auf dem Gel identifiziert werden (Bahn 3). Bei dieser cDNA-Kontrolle wurde ein Gemisch aus Skelettmuskel-cDNA und DNA von _ΦX174, HaeIII_-geschnitten, als _tester_ von reiner Skelettmuskel-cDNA als _driver_ subtrahiert. Die unsubtrahierte Kontrolle (Bahn 2) stellt cDNA dar, welche mit _RsaI_ behandelt wurde. Laut Herstellerangaben sollte für diese cDNA eine Auftrennung zwischen 0,1 kb und 2 kb nachweisbar sein. Dies konnte ebenfalls bestätigt werden. Für die subtrahierte cDNA (trainiert minus untrainiert) sollte eine breite Verteilung mit oder ohne distinkte Banden als Ergebnis der SSH zu erkennen sein. In Abb. 3.12 ist dies für die subtrahierte cDNA (trainiert minus untrainiert) eindeutig zu erkennen (Bahn 1). Es kann also davon ausgegangen werden, dass die SSH fehlerfrei verlaufen ist.

Abb. 3.12 Kontrolle der subtraktiven Hybridisierung nach der zweiten PCR
1) subtrahierte Gerbil-cDNA (_driver-tester-cDNA_)
2) unsubtrahierte _tester_-Kontrolle (Gerbil)
3) subtrahierte cDNA-Kontrolle (menschlicher Skelettmuskel)
4) DNA-Standard

3.2.3. Dot-Blot-Hybridisierung und Identifizierung nicht-mitochondrialer DNA

Abb. 3.13 Beispiel eines mit radioaktiv markierter mitochondrialer cDNA hybridisierten Dot-Blots. Mit Pfeilen sind Beispiele für positive Klone, also mitochondriale cDNA, gekennzeichnet, und mit Pfeilköpfen Beispiele für nicht-mitochondriale cDNA.

Eine Zusammenfassung aller identifizierten Klone, einschließlich der mitochondrialen cDNA, ist in Tab. 3.9 dargestellt. In dieser Tabelle ist aufgelistet, wie oft ein Klon identifiziert wurde. Des weiteren wird die Anzahl unabhängiger Klone angegeben, d.h. die Sequenzen dieser Klone sind zu unterschiedlichen Bereichen einer mRNA homolog.

Wie in Tab. 3.9 zu sehen, konnten sieben Klone der mRNA von M6a zugeordnet werden. Darin waren drei unabhängige Sequenzen enthalten. M6a ist ein Glykoprotein und gehört zur PLP/DM20 Familie. (Yan et al., 1993). PLP/DM20 ist eines der Hauptbestandteile des Myelins im Zentralnervensystem. Der erste sequenzierte Klon von M6a zeigte Homologien zu einem Teil der kodierenden Region sowie dem Beginn der 3'-untranslatierten Region (3'-UTR) der mRNA.
Ergebnisse
von Ratte sowie Maus. Weitere Klone waren homolog zur 3'-UTR oder zur 5'-UTR und dem Beginn der kodierenden Region.
Zwei unabhängige Klone konnten aufgrund ihrer Homologie der für das extrazelluläre Matrixprotein SC1 kodierenden mRNA aus Ratte und Maus zugeordnet werden (Johnston et al., 1990). SC1 ist ein Mitglied der Ig-Superfamilie.
Weiterhin wurden zwei identische Klone gefunden, welchen Teile der 5'-UTR sowie ein kurzes Stück der kodierenden Region der visinin-like protein (VILIP-1)-mRNA verschiedener Spezies zugeordnet werden konnte. VILIP-1 ist ein Ca\(^{2+}\)-bindendes, EF-Hand Protein. Es wurde erstmals beim Kükchen beschrieben (Lenz et al., 1992) und gehört zur Familie der neuronalen Ca\(^{2+}\)-Sensor (NCS)-Proteine (Burgoyne und Weiss, 2001).
Des weiteren wurde ein Klon mit einer Sequenz gefunden, welche eine 89 %ige Homologie zur 3'-UTR sowie dem Beginn der kodierenden Region der \(\alpha_1\)-Chimerin (\(\alpha_1\)-Chimerin) kodierenden mRNA hat. Eine Spleißvariante der \(\alpha_1\)-Chimerin-mRNA, die \(\alpha_2\)-Chimerin kodiert, wird von diesem Fragment ebenfalls erkannt. \(\alpha_1/\alpha_2\)-Chimerin sind in der Ratte identifizierte, neuronale GTPase aktivierende (GAP) Proteine für Rac1 und Cdc42 sowie Phorbolesterrezeptoren (Hall et al., 1990) und könnten somit in Prozesse der Reorganisation des Aktin-Zyotoskeletts involviert sein (Hall, 1998). \(\alpha_1\)-Chimerin inhibiert die Adhäsion und Regulation des Zytoskeletts in Fibroblasten, kontrolliert die Formation von Lamellodien/Filopodien in Neuroblastoma-Zellen und reguliert die Stabilität des Golgi während der Interphase (Kozma et al., 1996; Kazanietz, 2002). Erste Untersuchungen zu \(\alpha_2\)-Chimerin zeigten, dass es die Neuritogenese inhibiert und in Mechanismen der Entwicklung involviert ist (Hall et al., 2001).

Translocation (Translin , Synonym: testis-brain RNA-binding protein, TB-RBP) wurde erstmals als ein RNA- als auch Einzelstrang-DNA-bindendes Protein beschrieben (Aoki et al., 1995; Han et al., 1995). Als RNA-bindendes Protein vermittelt es den inter- und intrazellulären Transport von mRNA (Morales et al., 1998; Hecht, 2000). Mit seinem Interaktionspartner Translin-assoziated Faktor X (Trax) ist Translin vermutlich an chromosomaler Translokation während der Meiose beteiligt (Chennathukuzhi et al., 2001). Die vom Gerbil abgeleitete cDNA zeigte Homologien zu der kodierenden Region sowie der 3'-UTR der Ratten/Maus-mRNA.

Nur-related factor 1 (Nurr1) ist ein Orphan-Rezeptor und gehört zu einer Familie von Kernrezeptoren, die konstitutiv exprimierte TF darstellen (Law et al., 1992). Nurr1 ist gleichzeitig ein IEG. Ein in der vorliegenden Arbeit sequenzierter Klon zeigt Homologien zur 3'-
UTR der mRNA von Nurr1 aus Ratte und Maus, aber auch zu Nurr2, einer C-terminal verkürzten Isoform von Nurr1 (Ohkura et al., 1999).

Für einen weiteren Klon konnte Homologie zur 3’-UTR der mRNA aus Ratte/Maus festgestellt werden, die für das synaptosomally-assoziierte Protein SNAP-25 kodiert (Oyler et al., 1989).

Drei weitere voneinander unabhängige PCR-Produkte konnten keinem bekannten Gen zugeordnet werden. Das Plasmid mit der Bezeichnung 2.1.47 zeigte 92% Identität zu einer Maus cDNA Sequenz (NM_025364). Für die Klone mit der Bezeichnung 2.1.46 sowie 2.2.69 konnten bisher keine Homologien zu Einträgen in Datenbanken gefunden werden.

Weiterhin wurden nach der Sequenzierung je einmal PCR-Produkte der mRNA der Aldolase sowie der Triosephosphat-Isomerase, beides Enzyme der Glykolyse, zugeordnet.

Die identifizierten mitochondrialen cDNAs sind Gene, die für Enzyme der Atmungskette, wie die Cytochrom-C-Oxidase und die NADH-Dehydrogenase, sowie für ribosomale RNA kodieren.

Tab. 3.9 Zusammenfassung aller identifizierten Klone. Unter der Spalte „Anzahl“ ist die Gesamtzahl aller Klone, welche für dieses Gen identifiziert wurden und die Anzahl unabhängiger Klone angegeben.

<table>
<thead>
<tr>
<th>Bezeichnung der cDNA</th>
<th>Anzahl</th>
<th>Sequenzbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6a</td>
<td>7 / 3</td>
<td>5’-UTR/CDS, CDS/3’-UTR; 3’-UTR</td>
</tr>
<tr>
<td>VILIP-1</td>
<td>2</td>
<td>5’-UTR/CDS</td>
</tr>
<tr>
<td>NURR1/NURR2</td>
<td>1</td>
<td>3’-UTR</td>
</tr>
<tr>
<td>α1/α2-Chimerin</td>
<td>1</td>
<td>CDS/3’-UTR</td>
</tr>
<tr>
<td>SC1</td>
<td>2 / 2</td>
<td>CDS</td>
</tr>
<tr>
<td>Translin (TB-RBP)</td>
<td>1</td>
<td>CDS/3’-UTR</td>
</tr>
<tr>
<td>Calmodulin</td>
<td>1</td>
<td>3’-UTR</td>
</tr>
<tr>
<td>SNAP 25</td>
<td>1</td>
<td>3’-UTR</td>
</tr>
<tr>
<td>Aldolase A</td>
<td>1</td>
<td>CDS/3’-UTR</td>
</tr>
<tr>
<td>Triosephosphat-Isomerase</td>
<td>1</td>
<td>CDS</td>
</tr>
<tr>
<td>NADH-Dehydrogenase Untereinheit 4</td>
<td>2</td>
<td>CDS</td>
</tr>
<tr>
<td>NADH-Dehydrogenase Untereinheit 2</td>
<td>8</td>
<td>CDS, 3’-UTR</td>
</tr>
<tr>
<td>Cytochrom-C-Oxidase Untereinheit 1</td>
<td>2</td>
<td>CDS</td>
</tr>
<tr>
<td>unbekannte Gene (2.1.47, 2.1.46, 2.2.69)</td>
<td>3 / 3</td>
<td></td>
</tr>
<tr>
<td>mitochondriale DNA</td>
<td>4</td>
<td>16S RNA</td>
</tr>
</tbody>
</table>
3.2.4. Analyse durch Northern-Blot-Hybridisierung

Ziel der nachfolgend beschriebenen Experimente war es, mittels Northern-Blot-Hybridisierung die Expression einer Auswahl der in Tab. 3.9 aufgelisteten Gene im Gerbilhirn sowohl nach FM-Diskriminierungstraining als auch nach Krampfauslösung zu untersuchen.

1. Unbeweglichkeit, Starre, Mund- und Gesichtszuckungen;
2. Schütteln wie ein nasser Hund (*wet dog shakes*);
3. Hyperaktivität, Krämpfe der Vorderpfoten, Kopfnicken;
4. Aufrichten, starke Krämpfe der Vorderpfoten;
5. Aufrichten und Hinfallen, Verlust des Gleichgewichtes;

Für BDNF (Zafra et al., 1990) und Activin-βA (Inokuchi et al., 1996) wurde bereits im Rattenhirn gezeigt, dass 6 h nach Gabe von Kainat eine erhöhte Menge an mRNA vorlag.

Für alle untersuchten mRNAs, mit Ausnahme von VILIP-1, waren keine eindeutigen Expressionsänderungen nach dem FM-Diskriminierungslernen im AC des Gerbils nachweisbar (Abb. 3.14). In 2 von 3 unabhängigen Blots, d. h., die aus dem AC isolierte mRNA stammte von verschiedenen Tieren, konnte eine leicht verringerte VILIP-1-mRNA Menge in den trainierten Tieren gefunden werden (Abb. 3.14). Die mRNA von BDNF und Activin-βA war weder auf den Blots von trainierten noch von untrainierten Gerbils detektierbar.

GAPDH wurde als Kontrolle verwendet, um die gleichmäßige Beladung der einzelnen Bahnen zu überprüfen.
Ergebnisse

Abb. 3.14 Northern-Blot-Analyse von Gerbilhirn-RNA die nach Kainatstimulation oder nach FM-Diskriminierungstraining gewonnen wurde aus:

- **SK)** Kortex, 6 h nach Injektion physiologischer Kochsalzlösung
- **SH)** Hippokampus, 6 h nach Injektion physiologischer Kochsalzlösung
- **KK)** Kortex, 6 h nach Kainatgabe
- **KH)** Hippokampus, 6 h nach Kainatgabe
- **ut)** AC untrainierter Gerbils
- **t)** AC trainierter Gerbils, 5 h nach Trainingsende.

An der rechten Seite sind die ungefähren Größen der Transkripte in kb angegeben. Diese wurden, soweit vorhanden, verglichen mit denen anderer Spezies (Maus, Ratte, Mensch) und ähnelten diesen.

<table>
<thead>
<tr>
<th>Transkript</th>
<th>SK</th>
<th>SH</th>
<th>KK</th>
<th>KH</th>
<th>ut</th>
<th>t</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activin-βA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
</tr>
<tr>
<td>BDNF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,0</td>
</tr>
<tr>
<td>M6a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,0</td>
</tr>
<tr>
<td>α1/α1-Chimerin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>Nurr 1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,0</td>
</tr>
<tr>
<td>SC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,2</td>
</tr>
<tr>
<td>SNAP25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>Translin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,8</td>
</tr>
<tr>
<td>VILIP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3</td>
</tr>
<tr>
<td>Calmodulin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,4</td>
</tr>
<tr>
<td>2.1.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>2.2.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,5</td>
</tr>
<tr>
<td>2.1.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,0 (6,0)</td>
</tr>
<tr>
<td>GAPDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,4</td>
</tr>
</tbody>
</table>
3.2.5. Analyse durch nicht-radioaktive in situ-Hybridisierung

Da sich für den Gehalt an VILIP-1-mRNA im AC eine Erniedrigung nach FM-Diskriminierungslernen andeutete (siehe Abb. 3.14), wurde die Expression dieser mRNA mittels nicht-radioaktiver ISH näher analysiert. Mit der hier verwendeten Methode kann im Unterschied zur Northern-Blot-Hybridisierung, bei welcher das durchschnittliche Expressionsniveau pro Gehirnregion ermittelt wird, die Anzahl der Zellen, welche die nachzuweisende mRNA exprimieren, detektiert werden. Daher wurde auch die Expression weiterer mRNAs, wie die für Nurr1/2, Translin und α1/α2-Chimerin kodierenden nochmals mit dieser Methode untersucht. Für Nurr1 konnte nach räumlichem Lernen (Futtersuche in einem Lochbrett) eine erhöhte mRNA-Expression im Hippokampus der Ratte gefunden werden (Pena de Ortiz et al., 2000). Für Translin zeigte sich in der vorliegenden Arbeit eine leicht gestiegene mRNA-Menge nach Kainatstimulation. Die mRNAs für α1/α2-Chimerin wurden ausgewählt, da diese Proteine, wie die PKC-Isoenzyme, Phorbolesterrezeptor darstellen und Homologien zu der C1-Domäne von PKC aufweisen (Hall et al., 1990).

Wie bereits unter 3.2.1 beschrieben, wurde anhand von Gefrierschnitten die Anzahl der positiven Zellen im AC als auch SCo von untrainierten und trainierten Gerbils bestimmt und auf mm² normiert. Die jeweilige sense-Sonde diente als Nachweis für die Spezifität des mit der antisense-Sonde erhaltenen Expressionsmusters. Da die Quantifizierung sowohl der Translin-mRNA-exprimierenden Zellen als auch der α1/α1-Chimerin-mRNA-exprimierenden Zellen keine trainingsbedingten Unterschiede erbrachten, wurde auf ein detaillierte Darstellung dieser Ergebnisse verzichtet.

3.2.5.1. VILIP-1 in situ-Hybridisierung

In Abb. 3.15 sind repräsentative Beispiele für den Nachweis von VILIP-1-mRNA am Horizontalschnitt des Gerbilhirns mittels in situ-Hybridisierung dargestellt. VILIP-1-mRNA ist weit verbreitet und abundant in allen Gehirnarealen mit Ausnahme des Caudatoputamen. Auf subzellulärem Niveau war meist eine zytoplasmatische und selten eine nukleäre Verteilung der mRNA von VILIP-1 nachweisbar (Abb. 3.15H). Im Kortex (Abb. 3.15F und G) wird VILIP-1 in den Schichten II - VI, am stärksten in der Pyramidenzellschicht (V), exprimiert. Ein besonders hohes Expressionsniveau war für VILIP-1-mRNA im perirhinalen sowie entorhinalen Kortex detektierbar. Im Cerebellum zeigte sich, dass VILIP-1 nur in der Körnerzellschicht exprimiert wird, aber nicht in der Purkinjezellschicht oder Molekularschicht (Abb. 3.15D, E). Im Gegensatz
Ergebnisse

zur ISH an Hirnschnitten der Ratte (Paterlini et al., 2000) und auch zu immunhistochemischen Untersuchungen am Gerbil (Lenz et al., 1996) konnte das VILIP-1-Transskript im Gyrus dentatus nicht nachgewiesen werden. Analog zu Untersuchungen in der Ratte wurde VILIP-1-mRNA auch in den Pyramidenzellen der Regionen CA1 bis CA3 detektiert. Für die ISH mit der sense-Kontrolle war kein Signal nachweisbar (Abb. 3.15B). Insgesamt stimmen die Befunde für VILIP-1 gut mit den für die Ratte beschriebenen Expressionsmustern überein (Paterlini et al., 2000).

Abb. 3.15 In situ-Hybridisierung zur Detektion von VILIP-1-mRNA am Horizontalschnitt des Gerbilhirns. A,C – H ISH mit antisense-Sonde; B ISH mit sense-Sonde A, B Gesamtansicht, C Hippokampus, D Cerebellum, E vergrößerte Ansicht des Cerebellums, F entorhinaler Kortex, G auditorischer Kortex, H vergrößerte Ansicht des AC. Cb Cerebellum; CPu Caudatoputamen; HF Hippokampusformation; CA1, CA2 und CA3 Hippokampusareale; DG Gyrus dentatus; Ent entorhinaler Kortex; S Subiculum; GCL Körnerzellschicht; PCL Purkinjezellschicht; ML Molekularschicht. Balken in C, D, F und G = 250 µm, in E und H = 50 µm.
In Abb. 3.16 ist das Ergebnis der Quantifizierung VILIP-1-mRNA-exprimierender Zellen im AC sowie im SCo von trainierten und untrainierten Gerbils dargestellt. Im AC war 5 h nach dem Lernexperiment eine signifikant geringere Anzahl von VILIP-1-mRNA-positiven Zellen im Vergleich zu untrainierten Gerbils nachweisbar. Keine signifikanten Unterschiede konnten innerhalb der Gruppen zwischen der rechten und der linken Hemisphäre des AC gefunden werden. Im SCo waren keine trainingsbedingten Unterschiede nachweisbar.

* - signifikanter Unterschied zwischen trainierten und untrainierten Tieren (t-Test; p < 0,05)
3.2.5.2. Nurr1/Nurr2 in situ-Hybridisierung

Abb. 3.17 *In situ*-Hybridisierung zur Detektion von Nurr1/2-mRNA am Horizontalschnitt des Gerbilhirns. A–H
ISH mit *antisense*-Sonde; B ISH mit *sense*-Sonde A, B Gesamtansicht, C Hippokampus, D Cerebellum, E
vergrößerte Ansicht des Cerebellums, F entorhinaler Kortex, G auditorischer Kortex, H vergrößerte Ansicht des AC.
Cb Cerebellum; CPu Caudatoputamen; HF Hippokampusformation; CA1, CA2 und CA3 Hippokampusareale; DG
Gyrus dentatus; Ent entorhinaler Kortex; S Subiculum; GCL Körnerzellschicht; PCL Purkinjezellschicht; ML
Die quantitative Auswertung der Nurr1/2-mRNA-exprimierenden Zellen erbrachte weder im AC noch im SCo signifikante trainingsbedingte Unterschiede (Abb. 3.18). Beim Vergleich zwischen den Hemisphären zeigte sich jedoch die Tendenz einer rechtsseitig erhöhten Expression dieses Transkriptes, die im AC trainierter Gerbils und im SCo untrainierter Gerbils statistische Signifikanz erreichte.

Abb. 3.18 Quantifizierung von Nurr1/2-mRNA-exprimierenden Zellen im AC und SCo von untrainierten Gerbils und von Gerbils, die 5 h vor Dekapitation einem FM-Diskriminierungstraining unterzogen worden waren. Es sind jeweils die Ergebnisse der rechten und linken Hemisphäre sowie die Mittelwerte aus beiden dargestellt. * - signifikanter Unterschied innerhalb einer Gruppe (t-Test mit abhängigen Stichproben)

3.2.5.3. Ermittlung der Neuronendichte im AC des Gerbils

Ergebnisse

des Mongolischen Gerbils bestimmt werden. Ein Vergleich mit den in den verschiedenen ISH ermittelten Zellzahlen ist in Abb. 3.19 dargestellt. Die beiden IEG’s, Arc und Nurr1/2, zeigten die geringsten Expressionslevel, gefolgt vom Ca$^{2+}$-bindenden Protein VILIP-1. Die höchste Expression im Vergleich zu den eben genannten mRNAs waren für α_1/α_2-Chimerin und Translin nachweisbar. Insgesamt war die Anzahl der Zellen, welche Translin oder α_1/α_2-Chimerin exprimierten, immer noch deutlich geringer als die durch Nissl-Färbung ermittelte Gesamtanzahl von Neuronen. Eine Steigerung der Zellzahlen, welche die nachgewiesenen Transkripte exprimieren, war somit noch möglich.

Abb. 3.19 Ermittelte Gesamtanzahl von Neuronen im AC des Gerbils in Nissl-gefärbten Schnitten im Vergleich zu den verschiedenen Ergebnissen nach Quantifizierungen der in situ-Hybridisierungen. Dargestellt ist der prozentuale Anteil an positiven Zellen pro mm2 im AC im Vergleich zu der mittels Nissl-Färbung bestimmten Anzahl von Neuronen im AC.
4. Diskussion

Da für die Applikation der Pharmaka operative Eingriffe und der Einsatz von Anästhetika notwendig waren, wurde in einem ersten Versuchsansatz der Einfluss dieser Manipulationen auf das Diskriminierungsverhalten der Versuchstiere geprüft.

4.1. Pharmakologische Untersuchungen zu Proteinsynthese-abhängigen Prozessen im auditorischen Kortex der Mongolischen Wüstenrennmaus im Zusammenhang mit FM-Diskriminierungslernen

4.1.1. Einfluss von Operation, Narkose und Injektionsprozedur auf die Diskriminierungsleistung

Als Voraussetzung für die geplanten Studien wurde der Einfluss der Operation, der Narkose sowie der intrazerebralen Injektion auf die Diskriminierungsleistung der Tiere überprüft. Die Operation erfolgte einen Tag vor, die Injektion von Kochsalzlösung erfolgte 5 min und 2 h nach dem initialen Training. Während des initialen Trainings war eine erhöhte Gesamtaktivität der operierten Tiere im Vergleich zu den unbehandelten Kontrollen nachweisbar, welche vermutlich auf die Operation einen Tag zuvor zurückzuführen war. Die Diskriminierungsleistung der behandelten Gerbils unterschied sich aber weder im initialen Training noch in den in nachfolgenden Trainingssitzungen signifikant von der unbehandelten Tiere. Die Ergebnisse weisen darauf hin, dass die Behandlungsschritte, welche für die Substanzapplikation notwendig waren, keine Beeinträchtigung des Erlernens und der Durchführung der FM-Diskriminierungsreaktion verursachen. Das Ergebnis steht im Einklang mit Studien, die zeigen konnten, dass eine Halothannarkose bei Nagern keine retrograde Amnesie auslöst und eine
anterograde Amnesie nur erfolgen kann, wenn die Narkose innerhalb von 2 h vor einem Lernexperiment verabreicht wird (Rosman et al., 1992).

Weiterhin war es notwendig, die korrekte Positionierung der Injektionspipetten zu überprüfen. Entsprechende Experimente wurden in Zusammenarbeit mit Dr. Frank Ohl (IfN) durchgeführt, der dafür die 2DG Methode verwendete. Gehirne von Gerbils, die Injektionen in den AC erhalten hatten, wurden horizontal geschnitten (40 µm) und für die autoradiographische Analyse exponiert (Ohl et al., 1999). Die Auswertung dieser Hirnschnitte ergab, dass die Injektionspipetten korrekt im primären (AI), dem anterioren (AAF) und den posterioren (DP/VP) Feldern des AC des Gerbils platziert waren.

Frühere Studien an Mongolischen Gerbils zeigten, dass sowohl die bilaterale als auch die unilateral-rechtssseitige irreversible Läsion des AC mittels Thermokoagulation zu einer massiven Beeinträchtigung des FM-Diskriminierungsverhaltens führte. Dagegen waren Läsionen des linken AC diesbezüglich ohne Wirkung (Wetzel et al., 1998a; Ohl et al., 1999). Wie in der vorliegenden Arbeit beschrieben, führte die unilateral rechtshemisphärische Applikation von ANI 5 min und 2 h nach FM-Diskriminierungstraining von Gerbils zu keiner messbaren Beeinträchtigung der Diskriminierungsleistung an den nachfolgenden Trainingstagen. Die Befunde sprechen dafür, dass die funktionelle Integrität dieser Hirnstruktur durch die Behandlung nicht zerstört wurde.

4.1.2. **Injektionen von Anisomycin und Emetin**

Injektion erreichte Diskriminierungsleistung erhalten, während eine Verbesserung der Reaktion, wie in den Kontrolltieren, über mehrere Trainingstage hinweg gestört war. Die Injektion eines weiteren Inhibitors der Proteinsynthese, EME, zeigte eine ähnliche Wirkung. Weder ANI noch EME beeinflussten die Diskriminierungsleistung der Gerbils, wenn sie einige Tage vor dem initialen Training appliziert wurden.

allen Versuchen abnahm und die Anzahl der bedingten Reaktionen anstieg. Diese Veränderungen spiegelten wahrscheinlich eine Gewöhnung der Tiere an die Shuttle Box und die Prozedur wider, was darauf hindeutet, dass die Gerbils unabhängig von der Behandlung in der Lage sind, sich an die experimentelle Situation zu erinnern. Die Inhibitoren verursachen keine Veränderungen, die Wachsamkeit, Aktivität oder Sensitivität des sensorischen und motorischen Systems beeinflussen und damit für die schlechtere Diskriminierungsleistung der ANI- oder EME-behandelten Tiere in Vergleich zu den Kontrolltieren verantwortlich sein könnten.

Gerbils, denen unmittelbar und 2 h nach dem initialen Training ANI bilateral in den AC appliziert worden war, zeigten eine deutliche Steigerung ihrer Diskriminierungsleistung zwischen den ersten 24 Läufen (Block A) und den verbleibenden 36 Läufen (Block B, siehe Abb. 3.3). Die Diskriminierungsrate der ANI-behandelten Gerbils unterschied sich an den Tagen nach der Injektion im Block B nicht von der Kontrollgruppe. Die ANI-behandelten Tiere sind also in der Lage, die sensorischen Prozesse auszuführen, welche für die Richtungsdiskriminierung von FM s erforderlich sind und die entsprechende Verhaltensantwort zu geben. Sie sind aber nicht fähig, in den ersten Trainingsläufen nach Applikation der Substanzen die am Tag zuvor gezeigte Diskriminierungsleistung wieder zu erbringen. Daraus könnte man schließen, dass die erlernte Reaktion zwischen den einzelnen Trainingssitzungen, wenn die Tiere wieder in ihrem Käfigen untergebracht sind, nicht stabilisiert wird und die Gerbils innerhalb einer jeden Trainingssitzung ein Kurzzeitgedächtnis für die Diskriminierung von FM s ausbilden. Die beobachtete Steigerung der Diskriminierungsleistung innerhalb einer Trainingssitzung nach Injektion von ANI könnte aber auch darauf hinweisen, dass in der ersten Hälfte die Abrufung gestört war und während des Training wieder hergestellt wurde.

die Abrufung eines Gedächtnisses keine Proteinsynthese-abhängigen Prozesse der Rekonsolidierung aktiviert (Berman und Dudai, 2001; Lattal und Abel, 2001; Taubenfeld et al., 2001; Vianna et al., 2001). Dies deutet darauf hin, dass Mechanismen, die der Stabilisierung von reaktiviertem Gedächtnis zugrunde liegen, wahrscheinlich spezifisch für die jeweilige Gehirnregion und das Trainingsparadigma sind. Für Gerbils konnte 24 h nach der Injektion der Inhibitoren kein Einbruch ihrer partiell etablierten Diskriminierungsleistung nachgewiesen werden, sie war vergleichbar zum Vortag.

Im Vergleich zu den Kontrolltieren war eine weitere Verbesserung der Inhibitor-behandelten Tiere mit partiell etablierter Diskriminierungsleistung über mehrere Trainingstage gestört. Dieses Resultat lässt vermuten, dass Prozesse der Speicherung von neuer Information in bereits existierende Speicher auf ähnlichen Proteinsynthese-abhängigen Mechanismen der Konsolidierung beruhen könnten, wie die Stabilisierung der Reaktion nach initialer Akquisition.

4.1.3. **Injektion von Rapamycin und FK506**

RAPA bindet im Komplex mit FKBP12 an die Kinase mTOR. Durch den Komplex werden verschiedene Signalwege, die an der Regulation der Initiation der Translation beteiligt sind, inhibiert. Könnten die beobachteten lang anhaltenden Effekte von ANI oder EME eine RAPA-sensitive Komponente enthalten?

Zu Beginn der Experimente war noch nichts bekannt über die Wirkung von intrazerebral injizierten RAPA. Wie erst kürzlich publiziert wurde, führt die intrakraniale Injektion von 50 nM RAPA unmittelbar nach einem passiven Vermeidungslernen in Küken zu einer Beeinträchtigung des Kurzzeitgedächtnisses (Bennett et al., 2002). Nach Perfusion eines hippokampalen Schnittes der Ratte mit RAPA kommt es zu keiner Veränderung der basalen Transmission (Tang et al., 2002). Um Nebenwirkungen des RAPA und FK506 auf Mechanismen, die möglicherweise mit dem Diskriminierungsverhalten interferieren, zu überprüfen, erfolgte die Überwachung und Aufnahme weiterer Parameter, wie der SA und der ITC. Für die ITC wie auch die SA konnten keine signifikanten Unterschiede zwischen den Behandlungsgruppen nachgewiesen werden. Die Explorationsaktivität nahm im Vergleich zum initialen Training ab und die Anzahl der bedingten Reaktionen stieg an. Wie bereits für die analogen ANI-Experimente beschrieben, spiegeln diese Veränderungen wahrscheinlich eine Gewöhnung der Tiere an die Trainingsbox und an die allgemeine Prozedur wider. Die Gerbils sind also unabhängig von der Behandlung in der Lage, sich an die experimentelle Situation zu erinnern. RAPA oder auch FK506 verursachen keine Veränderungen, welche die Wachsamkeit, Aktivität oder Sensitivität des sensorischen und motorischen Systems beeinflussen und damit für die sinkende Diskriminierungsleistung der RAPA-behandelten Tiere im Vergleich zu den anderen Behandlungsgruppen verantwortlich sein könnten.

Der Effekt von RAPA war aber erst 48 h nach der Injektion zu beobachten. Dies deutet darauf hin, dass bei diesen Gerbils die Applikation von RAPA nach der Akquisition zu einer Inhibition von Komponenten oder Strukturen führt, welche für die Stabilisierung und/oder die Möglichkeit der Abrufung des Langzeitgedächtnisses über 24 h hinaus benötigt werden. Wie bereits für Aplysia vermutet, könnte dies auf einer Hemmung der lokalen synaptischen Proteinsynthese beruhen.

Welche intrazellulären Signalwege werden möglicherweise durch RAPA beeinflusst? Der intrazelluläre Rezeptor für RAPA in Eukaryoten ist FKBP12. FKBP12 ist eine Peptidyl-prolyl-cis/trans-Isomerase, welche die cis/trans bzw. trans/cis Isomerisierung von Peptidyl-Prolyl-Bindungen in prolinhaltigen Peptiden oder Proteinen katalysiert. FKBP12, der Hauptbindungspartner für RAPA, wurde als integraler Bestandteil zweier Ca\(^{2+}\)-Kanäle identifiziert. So liegt FKBP12 im Komplex mit dem Inositol-1,4,5-triphosphat-

Diskussion

der Translation während der Initiationsphase kann diese auch während der Elongation bei Eukaryoten beeinflusst werden. Der Elongationsfaktor eEF2 fördert die Translokation der mRNA vom ribosomalen Ort H zu P (Merrick und Nyborg, 2000; Proud, 2000). Phosphoryliertes eEF2 inhibiert diesen Prozess und die RAPA-Behandlung verhindert die Dephosphorylierung (Redpath et al., 1996). Ob mTOR die Aktivität von eEF2 reguliert ist unklar.

mTOR reguliert also u. a. den Phosphorylierungszustand von Proteinen, die in die Translationskontrolle involviert sind. Welche Rolle könnte mTOR bei Lern- und Gedächtnisvorgängen spielen? RAPA inhibiert die Langzeitverstärkung in Aplysia-Neuronen (Casadio et al., 1999), die frühe Phase einer BDNF induzierten LTP sowie die späte Phase (2 – 3 h nach Tetanus) einer LTP in hippokampalen Schnitten von Ratten (Raymond et al., 2002; Tang et al., 2002). 5-HT-Behandlung von Aplysia-Neuronen steigt die Phosphorylierung der S6K1. Dieser Signalweg ist RAPA-sensitiv (Khan et al., 2001). Dopamin-Applikation in Zellkultur aktiviert RAPA-abhängig ebenfalls die S6K1 (Polakiewicz et al., 1998).

mTOR interagiert mit Gephyrin, welches in das Gruppieren von GABA_\textsubscript{A}- und Glyzin-Rezeptoren involviert ist. Diese Bindung ist notwendig für das Signal zur S6K1 sowie zu 4E-BP1 (Essrich et al., 1998; Sabatini et al., 1999). Neurabin, ein neuronenspezifisches F-Aktin-bindendes Protein, bindet über seine PDZ-Domäne an den C-terminalen Teil der S6K1 und transportiert die S6K1 zu Nervendigungen (Nakanishi et al., 1997; Burnett et al., 1998). Weiterhin konnte gezeigt werden, dass mTOR, Gephyrin, S6K1 und Neurabin sich in einer synaptosomalen Fraktion anreichern (Burnett et al., 1998; Sabatini et al., 1999). Studien in kultivierten Hippokampus-Neuronen deuten darauf hin, dass eIF4E, 4EBP1, 4EBP2 und mTOR an der Postsynapse angereichert sind (Tang et al., 2002). Diese Ergebnisse sprechen für eine lokale Funktion von mTOR in der Regulation von synaptischer Proteinsynthese. Eine andere Verbindung zwischen mTOR und lokaler Translation könnte die Modulation der Phosphorylierung von eEF2 über verschiedene Neurotransmitter sein. Glutamat- und NMDA-Behandlung von kortikalen Neuronen in Zellkultur führt zu einer verstärkten Phosphorylierung von eEF2 und zu einer Verringerung der Translationsrate in Zellkörpern sowie in proximalen aber nicht distalen Zelfortsätzen (Marin et al., 1997; Scheetz et al., 2000). Weitere Studien weisen darauf hin, dass die Phosphorylierung des Elongationsfaktors die Translation von bestimmten mRNAs, wie die der alpha-Ca2+/Calmodulin-abhängige Kinase II (\(\alpha\text{CaMKII}\)), in Dendriten verstärkt (Scheetz et al., 1997; Scheetz et al., 2000).

In der vorliegenden Arbeit, war der Effekt von RAPA 48 h nach dem initialen Training nachweisbar. Es stellte sich die Frage, ob der beobachtete Einfluss von RAPA auf seine Bindung
Diskussion

an FKBP12 und damit möglicherweise auf die Inhibition der Aktivität vom mTOR sowie die Hemmung der Translation zurückzuführen ist. In einem parallelen Kompetitionsversuch wurden dazu die Bindungsstellen von FKBP12 mit FK506 abgesättigt und anschließend RAPA appliziert. Es sollte getestet werden, ob durch die Blockade der FKBP12-Bindungsstelle für RAPA sein Effekt auf die Diskriminierungsleistung unterdrückt werden kann. Der 100fache Überschuss von FK506 hob den durch RAPA verursachten Effekt vollständig auf. Die Injektion von FK506 gefolgt von einer Doppel-Injektion NaCl beeinflusste dagegen die Diskriminierungsleistung der Tiere nicht. Sowohl RAPA als auch FK506 hemmen durch die Bindung an FKBP12 dessen Isomerase-Aktivität und beide sind in der Lage, FKBP12 von den Rezeptoren zu verdrängen. Der RAPA-FKBP12-Komplex bindet aber im Gegensatz zu dem FK506-FKBP12-Komplex an mTOR.

Die Ergebnisse dieses Versuches deuten darauf hin, dass der durch RAPA hervorgerufene amnestische Effekt über den RAPA-FKBP12-mTOR-Signalweg vermittelt wird. Es ist daher zu vermuten, dass RAPA-sensitive Mechanismen der Regulation der Initiation der Translation für die lang anhaltende Stabilisierung eines Gedächtnisses für die Diskriminierung von FM im AC des Gerbils eine wichtige Rolle spielen.

4.2. Veränderungen in der Genexpression nach FM-Diskriminierungstraining

4.2.1. Erhöhte Expression von Arc (Arg3.1)-mRNA nach FM-Diskriminierungstraining

Um einen ersten Hinweis zu erhalten, ob es im Hörkortex des Gerbils nach FM-Diskriminierungslernen zu Änderungen in der Genexpression kommt, wurde zu Beginn die Expression von Arc untersucht. Für die mRNA von Arc konnte bereits in kortikalen Strukturen der Maus 4,5 h nach Präsentation eines neuen Stimulus eine erhöhte Expression nachgewiesen werden (Montag-Sallaz et al., 1999). Arc wurde als ein IEG identifiziert (Link et al., 1995; Lyford et al., 1995). Für verschiedene IEGs ist eine Erhöhung der Expression unmittelbar nach Lernexperimenten gezeigt wurden, so auch für Arc (Link et al., 1995; Lyford et al., 1995; Guzowski et al., 2000). Die Expression von Arc wird massiv durch synaptische Aktivität (Link et al., 1995; Lyford et al., 1995; Ying et al., 2002) sowie verschiedenste biochemische Stimuli induziert (z. B. Nakahara et al., 2000; Pei et al., 2000; Klebaur et al., 2002). Arc-mRNA sowie auch das Protein wurde in Dendriten von aktivierten Synapsen nachgewiesen (Steward et al., 1998; Wallace et al., 1998). Durch die Blockierung der Proteinexpression mittels antisense-Oligonukleotiden konnte gezeigt werden, dass Arc für die Aufrechterhaltung einer LTP sowie die
Konsolidierung eines Langzeitgedächtnis für räumliches Lernen wichtig ist. In Neuronen kann durch Ca$^{2+}$ und zyklisches Adenosin-3′5′-monophosphat (cAMP) die mRNA von Arc induziert werden. Die Induzierbarkeit ist dabei von der Aktivierung der PKA und des MAPK/ERK-Signalweges abhängig (Waltereit et al., 2001). Weitere Studien deuten darauf hin, dass BDNF ein Regulator der Arc-Induktion bei lang anhaltender synaptischer Plastizität ist (Ying et al., 2002). Es ist bisher wenig bekannt über die Funktion von Arc. Es wird vermutet, dass Arc an der Reorganisation des Zytoskeletts sowie der Regulation der Lokalisation von αCaMKII in die Dendriten beteiligt ist (Guzowski et al., 2001).

4.2.2. Subtraktive Hybridisierung zur Detektion differentiell exprimierter Gene

PCR-Amplifikationsrunden kompensiert werden kann. Da die SSH eine kinetische Reaktion ist, werden in beiden zu vergleichenden Gewebeproben vorkommende mRNAs nicht vollständig subtrahiert, weshalb cDNAs von im Zielgewebe 5 – 10fach erhöht exprimierter RNAs isoliert werden können.

Für die in dieser Arbeit bearbeitete Fragestellung wurde die SSH aus folgenden Gründen verwendet: nur zwei Proben sollten miteinander verglichen werden (trainiert minus untrainiert), die schnelle Durchführbarkeit des Experimentes (3 – 4 Tage) und die in der Literatur beschriebene geringe Anzahl falsch positiver PCR-Produkte (zum Teil weniger als 10 %) (Bole-Feyso et al., 2000). Durch die vorherige Verwendung des SMART™ PCR cDNA Synthesis Kits stand genügend Ausgangsmenge zur Verfügung. Dieses System bietet die Möglichkeit, cDNA über die gesamte Länge der mRNA-Moleküle herzustellen, was eine Identifizierung der erhaltenen cDNAs vereinfacht. Weiterhin bestanden bereits gute Erfahrung in der Anwendung dieser Methode innerhalb der Abteilung (Dieterich et al., 2002). Ferner wurde die SSH bereits zur Identifizierung differenziell exprimierter Gene in der Amygdala nach Angstkonditionierung genutzt (Stork et al., 2001). Nach Auswertung der identifizierten Klone mittels Northern-Blot-Hybridisierung konnten aber keine trainingsbedingten Expressionsänderungen nach Erwerb der FM-Diskriminierungsreaktion im AC des Gerbils gefunden werden.

In verschiedenen Spezies wurde bereits nachgewiesen, dass Langzeitgedächtnis eine zweite Phase intakter Proteinsynthese benötigt, die 3 – 5 h oder 6 – 7 h nach Training beginnt (Grecksch und Matthies, 1980; Chew et al., 1995; Freeman et al., 1995; Bourchouladze et al., 1998; Tiunova et al., 1998; Quevedo et al., 1999). In der vorliegenden Arbeit konnte gezeigt werden, dass im Vergleich zu Kochsalz-behandelten Tieren, Gerbils, denen 4 und 6 h nach dem initialen Training ANI in den AC verabreicht worden war, in den nachfolgenden Trainingssitzungen Defizite in der Diskriminierungsleistung aufwiesen. Veränderungen in der Expression auf Ebene der Transkription wurden daher 5 h nach Akquisition, in der möglichen zweiten Phase erhöhter Proteinsynthese, untersucht. Es war aber keine Induktion auf mRNA-Niveau mittels SSH detektierbar.

Es besteht die Möglichkeit, dass sich unter den trainierten Tieren, deren AC später für die SSH eingesetzt wurden, Gerbils mit unterschiedlicher Lerndynamik befanden, d. h. die Tiere erlernten innerhalb der ersten Trainingssitzung die Diskriminierung der FM auf unterschiedlich gut. Dies könnte möglicherweise in verschiedenen Expressionsniveaus resultieren. In anderen Studien konnte gezeigt werden, dass Unterschiede in der Expression von mRNAs zwischen guten und schlechten Lernern möglich sind. Die Arc mRNA-Expression im dorsalen Hippokampus der
Ratte von guten Lernern nach räumlichem Lernen war stärker als die von schlechteren Lernern (Guzowski et al., 2001). Eine höhere Menge des Arc Transkriptes in der CA3-Region wurde bei Wasser-deprivierten Ratten ermittelt, die länger dafür benötigten ein leverpressing operant conditioning paradigm (Hebel wird nach Ton gedrückt, um an Wasser zu gelangen) zu erlernen. Im Gegensatz dazu war eine geringere Arc Expression in der CA3-Region bei schnelleren Lernern nachweisbar (Kelly und Deadwyler, 2002). Wenn also die mRNA aus dem ACs von guten und schlechten Lernern 5 h nach FM-Diskriminierungstraining vermischt wurde, dann besteht die Möglichkeit, dass eine veränderte Expression mittels SSH nicht mehr detektierbar war. Weiterhin wird eine unterschiedliche Aufgabenverteilung der einzelnen Felder des AC diskutiert (Budinger et al., 2000a; Budinger et al., 2000b). Das könnte zu unterschiedlichen Expressionsmustern in diesen Feldern führen, die mittels SSH nicht detektiert werden konnten, da mRNA vom gesamten AC isoliert wurde.

4.2.3. Veränderungen der Genexpression nach FM-Diskriminierungstraining und Stimulation mit Kainat

4.2.3.1. Northern-Blot-Hybridisierung

Diskussion

4.2.3.2. Nicht-radioaktive in situ-Hybridisierung

VILIP-1

Für VILIP-1 war eine Senkung der mRNA-Expression im AC des Mongolischen Gerbils 5 h nach FM-Diskriminierungstraining sowohl durch Northern-Blot-Hybridisierung als auch durch die Detektion der mRNA im Gewebe nachweisbar. Im Vergleich dazu konnten keine Unterschiede zwischen trainierten und untrainierten Gerbils im SCo ermittelt werden. Dies
Diskussion

spricht für eine spezifische Regulation der Expression von VILIP-1-mRNA im AC des Gerbils nach FM-Diskriminierungstraining. Im Kortex bzw. Hippokampus fanden sich keine Unterschiede 6 h nach der intraperitonealen Applikation von Kainat im Vergleich zu NaCl-behandelten Gerbils.

Nurr1/Nurr2

4.3. Zusammenfassung und Ausblick

Die Ausbildung eines Langzeitgedächtnisses für die FM-Diskriminierungsreaktion ist, wie gezeigt werden konnte, abhängig von intakter Proteinsynthese im Hörkortex des Gerbils. Für die zugrunde liegenden Mechanismen können Proteinsynthese-abhängige Prozesse mit verschiedenen Zeitcharakteristiken angenommen werden, die sich in unterschiedlicher Weise...
Diskussion

Erste Ergebnisse zeigen, dass es auch zu trainingsbedingten Veränderungen in der Genexpression auf Ebene der Transkription im AC des Gerbils 5 h nach FM-Diskriminierungstraining kommt. Es war sowohl die Induktion als auch die Reprimierung von mRNAs nachweisbar.

Ein Ziel weiterführender Arbeiten könnte die Identifizierung von Neurotransmittersystemen und Charakterisierung von Signalkaskaden sein, die in die Konsolidierung des Langzeitgedächtnisses für die FM-Diskriminierungsreaktion im AC involviert sind.
Zusammenfassung

5. Zusammenfassung

Die Konditionierung des Mongolischen Gerbils zur Diskriminierung von linear frequenzmodulierten Tönen (FM) ist ein wichtiges Tiermodell für die auditorische Hirnforschung. In der vorliegenden Arbeit sollte die Bedeutung des Hörkortex für die Richtungsdiskriminierung von FMs untersucht werden.

In dieser Arbeit wurde erstmals gezeigt, dass transkriptionelle Veränderungen und Proteinsynthese-abhängige Prozesse sowie möglicherweise Mechanismen der Regulation der Initiation der Translation im AC des Gerbils für Konsolidierung, langfristige Stabilisierung und/oder Abrufung eines Gedächtnisses für die FM-Diskriminierungsreaktion eine Rolle spielen.
6. Literaturverzeichnis

Mactutus CF, Riccio DC, Ferek JM (1979) Retrograde amnesia for old (reactivated) memory: some anomalous characteristics. Science 204:1319-1320.

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2DG</td>
<td>2-Desoxyglukose Verfahren</td>
</tr>
<tr>
<td>AI</td>
<td>primäres auditorisches Feld</td>
</tr>
<tr>
<td>Ald</td>
<td>dorsaler Teil des primären auditorischen Kortex</td>
</tr>
<tr>
<td>AAF</td>
<td>anteriores auditorisches Feld</td>
</tr>
<tr>
<td>AC</td>
<td>auditorischer Kortex (auditory cortex)</td>
</tr>
<tr>
<td>ANI</td>
<td>Anisomycin</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Varianzanalyse</td>
</tr>
<tr>
<td>AV</td>
<td>anteroverntrales auditorisches Feld</td>
</tr>
<tr>
<td>BCIP</td>
<td>5-Bromo-4-chloro-3-indolyl-Phosphat</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BSA</td>
<td>Rinderserumalbumin (bovine serum albumin)</td>
</tr>
<tr>
<td>Cb</td>
<td>Cerebellum</td>
</tr>
<tr>
<td>cDNA</td>
<td>komplementäre Desoxyribonukleinsäure (complementary DNA)</td>
</tr>
<tr>
<td>CPu</td>
<td>Caudatoputamen</td>
</tr>
<tr>
<td>CR+</td>
<td>korrekte konditionierte Reaktion (correct conditioned response)</td>
</tr>
<tr>
<td>CR-</td>
<td>falsche Antwort auf den abwärtsmodulierten Ton</td>
</tr>
<tr>
<td>cRNA</td>
<td>komplementäre Ribonukleinsäure (complementary RNA)</td>
</tr>
<tr>
<td>CS+</td>
<td>aufwärtsmodulierter Ton 1-2 kHz, bedingter Reiz</td>
</tr>
<tr>
<td>CS-</td>
<td>abwärtsmodulierter Ton 2-1 kHz, bedingter Reiz</td>
</tr>
<tr>
<td>D</td>
<td>dorsales auditorisches Feld</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocarbonat</td>
</tr>
<tr>
<td>DG</td>
<td>Gyrus dentatus</td>
</tr>
<tr>
<td>DIG</td>
<td>Digoxigenin</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure (desoxyribonucleic acid)</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxynucleotidtriphosphat</td>
</tr>
<tr>
<td>DP</td>
<td>dorsoposteriores auditorisches Feld</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>EME</td>
<td>Emetin</td>
</tr>
<tr>
<td>Ent</td>
<td>entorhinaler Kortex</td>
</tr>
<tr>
<td>FM</td>
<td>frequenzmodulierte Töne</td>
</tr>
<tr>
<td>FS</td>
<td>Fußschock, Intensität des Strafreizes</td>
</tr>
<tr>
<td>GCL</td>
<td>Körnerzellschicht</td>
</tr>
<tr>
<td>HCl</td>
<td>Salzsäure</td>
</tr>
<tr>
<td>HF</td>
<td>Hippokampusformation</td>
</tr>
<tr>
<td>H2O2</td>
<td>Wasserstoffperoxid</td>
</tr>
<tr>
<td>IEG</td>
<td>immediate early gene</td>
</tr>
<tr>
<td>ISH</td>
<td>in situ-Hybridisierung</td>
</tr>
<tr>
<td>ITC</td>
<td>intertrial crossing, Intertrial-Aktivität</td>
</tr>
<tr>
<td>LB</td>
<td>Lauria Bertani</td>
</tr>
<tr>
<td>mca</td>
<td>mittlere Cerebralarterie</td>
</tr>
<tr>
<td>MGB</td>
<td>Corpus geniculatum mediale (mediales Genikulatum)</td>
</tr>
<tr>
<td>ML</td>
<td>Molekularschicht</td>
</tr>
<tr>
<td>Abkürzungen</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>MMLV</td>
<td>Moloney-Maus-Leukämie-Virus</td>
</tr>
<tr>
<td>MOPS</td>
<td>2-(N-Morpholino) propansulfonsäure</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger-RNA (messenger-RNA)</td>
</tr>
<tr>
<td>NaCl</td>
<td>Kochsalz</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natronlauge</td>
</tr>
<tr>
<td>NBT</td>
<td>4-Nitroblue-Tetrazoliumchlorid</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-Methyl-D-aspartat</td>
</tr>
<tr>
<td>PCL</td>
<td>Purkinjezellschicht</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerasekettenreaktion</td>
</tr>
<tr>
<td>RAPA</td>
<td>Rapamycin</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure (ribonucleic acid)</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuklease</td>
</tr>
<tr>
<td>S</td>
<td>Subiculum</td>
</tr>
<tr>
<td>SA</td>
<td>Startaktivität (Explorationsaktivität, Seitenwechsel in der Habituationszeit)</td>
</tr>
<tr>
<td>SCo</td>
<td>somatosensorischer Kortex</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>SSH</td>
<td>suppression subtractive hybridization</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borat-EDTA-Puffer</td>
</tr>
<tr>
<td>TF</td>
<td>Transkriptionsfaktoren</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>V</td>
<td>ventrales auditorisches Feld</td>
</tr>
<tr>
<td>VM</td>
<td>ventromediales auditorisches Feld</td>
</tr>
<tr>
<td>VP</td>
<td>ventroposteriores auditorisches Feld</td>
</tr>
</tbody>
</table>