Entwicklung und Implementierung innovativer Qualitästechniken zur Effektivierung von Managementsystemen

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

von Dipl.-Wirtsch.-Ing. Matthias Niemeyer
geb. am 13.01.1972 in Magdeburg

genehmigt durch die Fakultät Maschinenbau der
Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof. Dr.-Ing. habil. Martin Molitor
Prof. Dr. rer. nat. habil. Wolfgang Quaas
Dr. Jürgen Harms

Promotionskolloquium am 17.12.2004
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Einleitung</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Problemstellung und Stand der Technik</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Zielsetzung und Vorgehensweise</td>
<td>3</td>
</tr>
<tr>
<td>2 Grundlagen und Zweck von Managementsystemen</td>
<td>5</td>
</tr>
<tr>
<td>3 Qualitätsmanagement</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Geschichtliche Entwicklung</td>
<td>11</td>
</tr>
<tr>
<td>3.1.1 Null-Fehler-Programm (Zero Defects Concept)</td>
<td>18</td>
</tr>
<tr>
<td>3.1.2 TQC - Total Quality Control</td>
<td>18</td>
</tr>
<tr>
<td>3.1.3 TQM - Total Quality Management</td>
<td>19</td>
</tr>
<tr>
<td>3.2 Anforderungen an das Qualitätsmanagement</td>
<td>22</td>
</tr>
<tr>
<td>3.3 Normungen für Qualitätsmanagementsysteme</td>
<td>26</td>
</tr>
<tr>
<td>3.3.1 DIN EN ISO 9001:2000</td>
<td>27</td>
</tr>
<tr>
<td>3.3.1.1 Aufbau und Anforderungen</td>
<td>27</td>
</tr>
<tr>
<td>3.3.1.2 Ablauf einer Zertifizierung</td>
<td>33</td>
</tr>
<tr>
<td>3.4 Qualitätsmanagementsysteme der Automobilindustrie</td>
<td>34</td>
</tr>
<tr>
<td>3.4.1 QS 9000:1998</td>
<td>36</td>
</tr>
<tr>
<td>3.4.1.1 Aufbau und Anforderungen</td>
<td>36</td>
</tr>
<tr>
<td>3.4.2 VDA 6.1</td>
<td>39</td>
</tr>
<tr>
<td>3.4.2.1 Aufbau und Anforderungen</td>
<td>39</td>
</tr>
<tr>
<td>3.4.3 ISO/TS 16949:2002</td>
<td>42</td>
</tr>
<tr>
<td>3.4.3.1 Aufbau und Anforderungen</td>
<td>42</td>
</tr>
<tr>
<td>4 Umweltmanagement</td>
<td>49</td>
</tr>
<tr>
<td>4.1 Geschichtliche Entwicklung</td>
<td>51</td>
</tr>
<tr>
<td>4.2 Normungen für Umweltmanagementsysteme</td>
<td>53</td>
</tr>
<tr>
<td>4.2.1 DIN EN ISO 14001:1996</td>
<td>53</td>
</tr>
<tr>
<td>4.2.1.1 Aufbau und Anforderungen</td>
<td>53</td>
</tr>
<tr>
<td>4.2.2 Umsetzung eines Umweltmanagements nach DIN EN ISO 14001:1996</td>
<td>56</td>
</tr>
<tr>
<td>4.2.3 Ablauf einer Zertifizierung</td>
<td>58</td>
</tr>
<tr>
<td>4.2.4 EMAS - Eco-Management and Audit Scheme</td>
<td>60</td>
</tr>
<tr>
<td>4.2.4.1 Aufbau und Anforderungen</td>
<td>60</td>
</tr>
<tr>
<td>4.2.5 Ablauf einer Zertifizierung</td>
<td>63</td>
</tr>
<tr>
<td>4.3 Vergleich EMAS und DIN EN ISO 14001:1996</td>
<td>68</td>
</tr>
<tr>
<td>4.4 Umweltmanagementsysteme der Automobilindustrie</td>
<td>72</td>
</tr>
<tr>
<td>Nummer</td>
<td>Kapitel</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>5</td>
<td>Arbeitsschutz-/Sicherheitsmanagement</td>
</tr>
<tr>
<td>5</td>
<td>Arbeitsschutz-/Sicherheitsmanagement</td>
</tr>
<tr>
<td>5</td>
<td>Arbeitsschutz-/Sicherheitsmanagement</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Britischer Standard BS 8800:1996</td>
</tr>
<tr>
<td>5.3.2</td>
<td>BSI-OHSAS 18001:1999</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Sicherheits-Certifikat-Contraktoren (SCC)-Management</td>
</tr>
<tr>
<td>5.3.4</td>
<td>OHRIS</td>
</tr>
<tr>
<td>5.3.5</td>
<td>LASI - Spezifikation zur freiwilligen Einführung, Anwendung und Weiterentwicklung von Arbeitsschutzmanagementsystemen</td>
</tr>
<tr>
<td>5.4</td>
<td>Vergleich von Arbeitsschutz-/Sicherheitsmanagementsystemen</td>
</tr>
<tr>
<td>5.5</td>
<td>Arbeitsschutz-/Sicherheitsmanagementsysteme der Automobilindustrie</td>
</tr>
<tr>
<td>6</td>
<td>Integration von verschiedenen Managementsystemen</td>
</tr>
<tr>
<td>6.2</td>
<td>Grundgedanken und Ziele der Integration</td>
</tr>
<tr>
<td>6</td>
<td>Integration von verschiedenen Managementsystemen</td>
</tr>
<tr>
<td>6.4</td>
<td>Modelle zur Integration</td>
</tr>
<tr>
<td>6.4</td>
<td>Modelle zur Integration</td>
</tr>
<tr>
<td>6.4</td>
<td>Modelle zur Integration</td>
</tr>
<tr>
<td>6.5</td>
<td>Zielkonflikte von Integrationsmodellen</td>
</tr>
<tr>
<td>6.6</td>
<td>Kritische Würdigung der Integrationsmodelle</td>
</tr>
<tr>
<td>6.7</td>
<td>Integrierte Managementsysteme für die Automobilindustrie</td>
</tr>
<tr>
<td>7</td>
<td>Betriebliches Vorschlagswesen</td>
</tr>
<tr>
<td>7.2</td>
<td>Untersuchung</td>
</tr>
<tr>
<td>7.3</td>
<td>Generierung eines innovativen betrieblichen Vorschlagswesens</td>
</tr>
<tr>
<td>7.3</td>
<td>Generierung eines innovativen betrieblichen Vorschlagswesens</td>
</tr>
<tr>
<td>7.4</td>
<td>Ergebnisse nach Einführung des Vorgesetztenmodells</td>
</tr>
<tr>
<td>Bild</td>
<td>Titel</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Bild 1</td>
<td>Technische und organisatorische Anforderungen an ein Unternehmen</td>
</tr>
<tr>
<td>Bild 2</td>
<td>Kurzübersicht über das System der rechtlichen Regelungen</td>
</tr>
<tr>
<td>Bild 3</td>
<td>Aufbau eines Managementsystems (z.B. Qualitätsmanagementsystem)</td>
</tr>
<tr>
<td>Bild 4</td>
<td>Interne und externe Einflussgruppen</td>
</tr>
<tr>
<td>Bild 5</td>
<td>Sicherheit durch Anwendung des Managementsystems</td>
</tr>
<tr>
<td>Bild 6</td>
<td>Interaktion von Kunde und Lieferant</td>
</tr>
<tr>
<td>Bild 7</td>
<td>Qualitätsarten</td>
</tr>
<tr>
<td>Bild 8</td>
<td>Qualität = Ausmaß der Anpassung</td>
</tr>
<tr>
<td>Bild 9</td>
<td>Entwicklungsstufen des Qualitätsmanagements</td>
</tr>
<tr>
<td>Bild 10</td>
<td>Zusammenhang zwischen Q-Denken und Q-Techniken</td>
</tr>
<tr>
<td>Bild 11</td>
<td>Einflüsse auf eine Organisation und deren QM-System</td>
</tr>
<tr>
<td>Bild 12</td>
<td>Entwicklung vom Hersteller- zum Käufermarkt</td>
</tr>
<tr>
<td>Bild 13</td>
<td>Effekte unzufriedener Kunden</td>
</tr>
<tr>
<td>Bild 14</td>
<td>Wandel des QM-Denkens</td>
</tr>
<tr>
<td>Bild 15</td>
<td>Grundpfeiler des TQM</td>
</tr>
<tr>
<td>Bild 16</td>
<td>Aufgaben und Ziele im TQM</td>
</tr>
<tr>
<td>Bild 17</td>
<td>Wechselbeziehungen im QM mit TQM als Ausgangspunkt</td>
</tr>
<tr>
<td>Bild 18</td>
<td>Anforderungen an das Qualitätsmanagement</td>
</tr>
<tr>
<td>Bild 19</td>
<td>Gewichtung der Zielsetzungen bei Produktionskonzepten</td>
</tr>
<tr>
<td>Bild 20</td>
<td>Funktionen des Qualitätsmanagements</td>
</tr>
<tr>
<td>Bild 21</td>
<td>Operativer und evolutionärer Qualitätsregelkreis</td>
</tr>
<tr>
<td>Bild 22</td>
<td>Qualitätsmanagementkreis</td>
</tr>
<tr>
<td>Bild 23</td>
<td>Prozessorientierter Ansatz</td>
</tr>
<tr>
<td>Bild 24</td>
<td>Nutzen der Prozessorientierung</td>
</tr>
<tr>
<td>Bild 25</td>
<td>Prozessarten im Prozessmodell</td>
</tr>
<tr>
<td>Bild 26</td>
<td>Modell eines prozessorientierten QMS</td>
</tr>
<tr>
<td>Bild 27</td>
<td>Anforderungen an QMS nach DIN EN ISO 9001:2000</td>
</tr>
<tr>
<td>Bild 28</td>
<td>Ablauf einer Zertifizierung</td>
</tr>
<tr>
<td>Bild 29</td>
<td>Pyramide der hierarchischen Automobilzuliefererstruktur</td>
</tr>
<tr>
<td>Bild 30</td>
<td>Geschichtliche Entwicklung automobil spezifischer Normen</td>
</tr>
<tr>
<td>Bild 31</td>
<td>Aufbau der Dokumentation nach QS-9000</td>
</tr>
<tr>
<td>Bild 32</td>
<td>Struktur der VDA-Bände der Reihe 6</td>
</tr>
<tr>
<td>Bild 33</td>
<td>Zusammenhang der Forderungsdokumente nach VDA 6.1</td>
</tr>
<tr>
<td>Bild 34</td>
<td>Inhalt des Fragenkataloges zur VDA 6.1 – Unternehmensführung</td>
</tr>
<tr>
<td>Bild 35</td>
<td>Inhalt des Fragenkataloges zur VDA 6.1 – Produkt & Prozess</td>
</tr>
<tr>
<td>Bild 36</td>
<td>Geschichte wichtiger QMS in der Automobilindustrie</td>
</tr>
<tr>
<td>Bild 37</td>
<td>Ziele der Uberarbeitung der ISO/TS 16949:2002</td>
</tr>
<tr>
<td>Bild 38</td>
<td>Kapitelstruktur</td>
</tr>
<tr>
<td>Bild 39</td>
<td>Geltungsbereich der ISO/TS 16949:2002</td>
</tr>
<tr>
<td>Bild 40</td>
<td>Interne Anforderungen an die Dokumente</td>
</tr>
<tr>
<td>Bild 41</td>
<td>Externe Anforderungen an die Dokumente</td>
</tr>
<tr>
<td>Bild 42</td>
<td>Auswirkungen eines produzierenden Betriebes auf die Umwelt</td>
</tr>
<tr>
<td>Bild 43</td>
<td>Nutzen durch das Umweltmanagement</td>
</tr>
<tr>
<td>Bild 44</td>
<td>Phasenmodell für den Aufbau eines UMS nach DIN EN ISO 14001:1996</td>
</tr>
<tr>
<td>Bild 45</td>
<td>Ablauf einer Erstzertifizierung</td>
</tr>
<tr>
<td>Bild 46</td>
<td>EMAS – Zeichen</td>
</tr>
<tr>
<td>Bild 47</td>
<td>Ablaufdiagramm für die Beteiligung an EMAS</td>
</tr>
<tr>
<td>Bild 48: Standort und Betriebsbilanz</td>
<td>93</td>
</tr>
<tr>
<td>Bild 49: Umweltauswirkungen während des Produktlebenszyklus</td>
<td>93</td>
</tr>
<tr>
<td>Bild 50: Inhalt der Umwelterklärung</td>
<td>93</td>
</tr>
<tr>
<td>Bild 51: Verhältnis von EMAS zur DIN EN ISO 14001:1996</td>
<td>93</td>
</tr>
<tr>
<td>Bild 52: Beweggründe zur Einführung eines UMS</td>
<td>93</td>
</tr>
<tr>
<td>Bild 53: Beziehung Gesundheit-Arbeit</td>
<td>93</td>
</tr>
<tr>
<td>Bild 54: Aufbau des ASS-Vorschriftensystems</td>
<td>93</td>
</tr>
<tr>
<td>Bild 55: Komplexität des Sicherheitsmanagements</td>
<td>93</td>
</tr>
<tr>
<td>Bild 56: Ausgewählte Arbeitsschutz-/Sicherheitsmanagementsysteme</td>
<td>93</td>
</tr>
<tr>
<td>Bild 57: Arbeitsschutz-/Sicherheitsmanagementsystem nach BS 8800</td>
<td>93</td>
</tr>
<tr>
<td>Bild 58: Elemente von BSI OHSAS 18001:1999</td>
<td>93</td>
</tr>
<tr>
<td>Bild 59: Kosten-Wirkungsdiagramm auf die Zeit</td>
<td>93</td>
</tr>
<tr>
<td>Bild 60: Beteiligte Parteien an Managementsystemen</td>
<td>93</td>
</tr>
<tr>
<td>Bild 61: Schnittmengen zwischen verschiedenen Managementsystemen</td>
<td>93</td>
</tr>
<tr>
<td>Bild 62: Einsparpotential durch die Einführung eines IMS</td>
<td>93</td>
</tr>
<tr>
<td>Bild 63: Zweif-Säulen-Konzept des Integrierten Managements</td>
<td>93</td>
</tr>
<tr>
<td>Bild 64: Aufbau eines IMS</td>
<td>93</td>
</tr>
<tr>
<td>Bild 65: Potentielle Zielkonflikte</td>
<td>93</td>
</tr>
<tr>
<td>Bild 66: Entwicklung zum IMS</td>
<td>93</td>
</tr>
<tr>
<td>Bild 67: Erfolgspotentiale der Organisation</td>
<td>93</td>
</tr>
<tr>
<td>Bild 68: Formen der Beteiligung am BVW</td>
<td>93</td>
</tr>
<tr>
<td>Bild 69: Organe des BVW</td>
<td>93</td>
</tr>
<tr>
<td>Bild 70: Vergleich Unternehmen A und B</td>
<td>93</td>
</tr>
<tr>
<td>Bild 71: Kennzahlenvergleich</td>
<td>93</td>
</tr>
<tr>
<td>Bild 72: BVW-Ablauforganisation</td>
<td>93</td>
</tr>
<tr>
<td>Bild 73: Frage 6 Motivationsaspekt</td>
<td>93</td>
</tr>
<tr>
<td>Bild 74: Frage 7 Motivationshemmnis</td>
<td>93</td>
</tr>
<tr>
<td>Bild 75: Frage 8 VV für BVW im eigenen Unternehmen</td>
<td>93</td>
</tr>
<tr>
<td>Bild 76: Altersstruktur</td>
<td>93</td>
</tr>
<tr>
<td>Bild 77: Bekanntschafts- und Einreichungsgrad der Mitarbeiter 1999</td>
<td>93</td>
</tr>
<tr>
<td>Bild 78: Motivationsaspekte der Mitarbeiter</td>
<td>93</td>
</tr>
<tr>
<td>Bild 79: Motivationshemmnisse der Mitarbeiter</td>
<td>93</td>
</tr>
<tr>
<td>Bild 80: Hemmnisbarrieren seitens der Mitarbeiter</td>
<td>93</td>
</tr>
<tr>
<td>Bild 81: Kategorisierung der Hemmnisbarrieren und deren mögliche Ursachen</td>
<td>93</td>
</tr>
<tr>
<td>Bild 82: Maßnahmen zum Abbau von Hemmnisbarrieren</td>
<td>93</td>
</tr>
<tr>
<td>Bild 83: Anreizsystem</td>
<td>93</td>
</tr>
<tr>
<td>Bild 84: Das Vorgesetztenmodell</td>
<td>93</td>
</tr>
<tr>
<td>Bild 85: Wissenskreislauf</td>
<td>93</td>
</tr>
<tr>
<td>Bild 86: Befragungsergebnisse 2001</td>
<td>93</td>
</tr>
<tr>
<td>Bild 87: Beteiligungsquote im Jahre 2001</td>
<td>93</td>
</tr>
<tr>
<td>Bild 88: Mitarbeiterschulungen</td>
<td>93</td>
</tr>
<tr>
<td>Bild 89: Orientierungsld in der CBT-Anwendung</td>
<td>93</td>
</tr>
<tr>
<td>Bild 90: Ausschnitt aus dem Lexikon im CBT-Programm</td>
<td>93</td>
</tr>
<tr>
<td>Bild 91: Beispiel einer Testfrage</td>
<td>93</td>
</tr>
<tr>
<td>Bild 92: Anzeige für richtige Beantwortung der Frage</td>
<td>93</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Übersicht</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabelle 1</td>
<td>Normative Anforderungen an verschiedene Teilmanagementsysteme</td>
<td>3</td>
</tr>
<tr>
<td>Tabelle 2</td>
<td>Traditionelle Qualitätssicherung versus TQM</td>
<td>21</td>
</tr>
<tr>
<td>Tabelle 3</td>
<td>Wesentliche Elemente der Qualitätspolitik</td>
<td>32</td>
</tr>
<tr>
<td>Tabelle 4</td>
<td>Normative Forderungen der Automobilhersteller (Stand Mitte 2003)</td>
<td>35</td>
</tr>
<tr>
<td>Tabelle 5</td>
<td>Statistik der weltweit zertifizierten UMS (Stand per 09/2003)</td>
<td>52</td>
</tr>
<tr>
<td>Tabelle 6</td>
<td>Aufbau der DIN EN ISO 14001:1996</td>
<td>54</td>
</tr>
<tr>
<td>Tabelle 7</td>
<td>Zuständigkeiten während der Zertifizierung</td>
<td>67</td>
</tr>
<tr>
<td>Tabelle 8</td>
<td>Vergleich EMAS und DIN EN ISO 14001:1996</td>
<td>69</td>
</tr>
<tr>
<td>Tabelle 9</td>
<td>Begriffliche Erläuterung des ASS-Vorschriftensystems</td>
<td>76</td>
</tr>
<tr>
<td>Tabelle 10</td>
<td>Vergleich europäischer Ansätze zu AMS</td>
<td>89</td>
</tr>
<tr>
<td>Tabelle 11</td>
<td>Ziele eines IMS</td>
<td>96</td>
</tr>
<tr>
<td>Tabelle 12</td>
<td>Konzeptionelle Unterschiede zwischen den Managementsystemen</td>
<td>100</td>
</tr>
<tr>
<td>Tabelle 13</td>
<td>Statistik zum BVW</td>
<td>111</td>
</tr>
<tr>
<td>Tabelle 14</td>
<td>Unternehmensprofile</td>
<td>112</td>
</tr>
<tr>
<td>Tabelle 15</td>
<td>Vereinfachtes Kalkulationsschema</td>
<td>143</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher oder englischer Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abl.</td>
<td>Amtsblatt</td>
</tr>
<tr>
<td>AIAG</td>
<td>Automotive Industry Action Group</td>
</tr>
<tr>
<td>ANFIA</td>
<td>Associazione Nazionale Fra Industrie Automobilistiche</td>
</tr>
<tr>
<td>ANPQP</td>
<td>Alliance new Product Quality Procedure</td>
</tr>
<tr>
<td>APQP</td>
<td>Advanced Product Quality Planing & Control Plan</td>
</tr>
<tr>
<td>ArbSchG</td>
<td>Arbeitsschutzgesetz</td>
</tr>
<tr>
<td>ArbStättV</td>
<td>Arbeitsstättenverordnung</td>
</tr>
<tr>
<td>ASiG</td>
<td>Gesetz über Betriebsärzte, Sicherheitsingenieure und andere Fachkräfte für Arbeitssicherheit</td>
</tr>
<tr>
<td>ASM</td>
<td>Arbeitsschutzmanagement</td>
</tr>
<tr>
<td>ASMS</td>
<td>Arbeitsschutzmanagementsystem</td>
</tr>
<tr>
<td>ASS</td>
<td>Arbeitsschutz und Sicherheit</td>
</tr>
<tr>
<td>ASSM</td>
<td>Arbeitsschutz-/Sicherheitsmanagement</td>
</tr>
<tr>
<td>ASSMS</td>
<td>Arbeitsschutz-/Sicherheitsmanagementsystem</td>
</tr>
<tr>
<td>BArbBl</td>
<td>Bundesarbeitsblatt</td>
</tr>
<tr>
<td>BbodSchG</td>
<td>Bundes-Bodenschutzgesetz</td>
</tr>
<tr>
<td>BImSchG</td>
<td>Bundes-Immissionsschutzgesetz</td>
</tr>
<tr>
<td>BImSchV</td>
<td>Bundes-Immissionsschutzverordnung</td>
</tr>
<tr>
<td>BIZ</td>
<td>Bank für Internationalen Zahlungsausgleich</td>
</tr>
<tr>
<td>BMA</td>
<td>Bundesarbeitsministerium</td>
</tr>
<tr>
<td>BSI</td>
<td>British Standards Institution</td>
</tr>
<tr>
<td>BVW</td>
<td>Betriebliches Vorschlagswesen</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>CAI</td>
<td>Computer Assisted Instruction</td>
</tr>
<tr>
<td>CAL</td>
<td>Computer Assisted Learning</td>
</tr>
<tr>
<td>CBT</td>
<td>Computer Based Training</td>
</tr>
<tr>
<td>CCFA</td>
<td>Comité des Constructeurs Français d'Automobiles</td>
</tr>
<tr>
<td>CIP</td>
<td>Continuous Improvement Process</td>
</tr>
<tr>
<td>CUL</td>
<td>Computerunterstütztes Lernen</td>
</tr>
<tr>
<td>CUU</td>
<td>Computerunterstützter Unterricht</td>
</tr>
<tr>
<td>CWQC</td>
<td>Company-Wide Quality Control</td>
</tr>
<tr>
<td>DAU</td>
<td>Deutsche Akkreditierungs- und Zulassungsgesellschaft</td>
</tr>
<tr>
<td>DGQ</td>
<td>Deutsche Gesellschaft für Qualität</td>
</tr>
<tr>
<td>DIB</td>
<td>Deutsches Institut für Betriebswirtschaft e.V.</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsche Industrie Norm, Deutsches Institut für Normung e.V.</td>
</tr>
<tr>
<td>EAQF</td>
<td>Evaluation d’Aptitude Qualité Fournisseurs</td>
</tr>
<tr>
<td>EFQM</td>
<td>European Foundation for Quality Management</td>
</tr>
<tr>
<td>EG</td>
<td>Europäische Gemeinschaft</td>
</tr>
<tr>
<td>EMAS</td>
<td>Eco-Management and Audit Scheme</td>
</tr>
<tr>
<td>EN</td>
<td>Europäische Norm</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Ausdruck</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>EQA</td>
<td>European Quality Award</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>FIEV</td>
<td>Fédération des Industries des Equipements pour Véhicules</td>
</tr>
<tr>
<td>FMEA</td>
<td>Potential Failure Mode and Effects Analysis (Fehlermöglichkeits- und Einflussanalyse)</td>
</tr>
<tr>
<td>GM</td>
<td>General Motors</td>
</tr>
<tr>
<td>GSG</td>
<td>Gerätesicherheitsgesetz</td>
</tr>
<tr>
<td>IATF</td>
<td>International Automotive Task Force</td>
</tr>
<tr>
<td>IHK</td>
<td>Industrie- und Handelskammer</td>
</tr>
<tr>
<td>ILO</td>
<td>International Labour Organisation</td>
</tr>
<tr>
<td>IMS</td>
<td>Integriertes Managementsystem</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standardization Organization</td>
</tr>
<tr>
<td>JAMA</td>
<td>Japan Automobile Manufacturers Association</td>
</tr>
<tr>
<td>KMU</td>
<td>Kleine und mittlere Unternehmen</td>
</tr>
<tr>
<td>KonTraG</td>
<td>Gesetz zur Kontrolle und Transparenz im Unternehmensbereich</td>
</tr>
<tr>
<td>KrW-/AbfG</td>
<td>Kreislaufwirtschafts- und Abfallgesetz</td>
</tr>
<tr>
<td>KVP</td>
<td>Kontinuierlicher Verbesserungsprozess</td>
</tr>
<tr>
<td>MSA</td>
<td>Measurement Systems Analysis</td>
</tr>
<tr>
<td>NQSZ</td>
<td>Normenausschuss für Qualitätsmanagement, Statistik und Zertifizierung</td>
</tr>
<tr>
<td>OHRIS</td>
<td>Occupational Health- und Risk-Management</td>
</tr>
<tr>
<td>PDCA-Zyklus</td>
<td>Plan-Do-Check-Act-Zyklus</td>
</tr>
<tr>
<td>PPAP</td>
<td>Production Part Approval Process</td>
</tr>
<tr>
<td>ProdhaftG</td>
<td>Produkthaftungsgesetz</td>
</tr>
<tr>
<td>QM</td>
<td>Qualitätsmanagement</td>
</tr>
<tr>
<td>QMA</td>
<td>Qualitätsmanagement-Arbeitsanweisung</td>
</tr>
<tr>
<td>QMC</td>
<td>Qualitäts Management Center</td>
</tr>
<tr>
<td>QMH</td>
<td>Qualitätsmanagement-Handbuch</td>
</tr>
<tr>
<td>QMS</td>
<td>Qualitätsmanagementsystem</td>
</tr>
<tr>
<td>QMVA</td>
<td>Qualitätsmanagement-Verfahrensanweisungen</td>
</tr>
<tr>
<td>QOS</td>
<td>Quality Operating System</td>
</tr>
<tr>
<td>QPN</td>
<td>Qualifizierungsprogramm Neuteile</td>
</tr>
<tr>
<td>QSA</td>
<td>Quality System Assessment</td>
</tr>
<tr>
<td>RvA</td>
<td>Raad voor Accreditatie (Niederländischer Akkreditierungsrat)</td>
</tr>
<tr>
<td>SCC</td>
<td>Sicherheits-Certifikat-Contraktoren</td>
</tr>
<tr>
<td>SGB</td>
<td>Sozialgesetzbuch</td>
</tr>
<tr>
<td>SGU</td>
<td>Sicherheit, Gesundheit- und Umweltschutz</td>
</tr>
<tr>
<td>SMMT</td>
<td>Society of Motor Manufacturers and Traders</td>
</tr>
<tr>
<td>SPC</td>
<td>Statistical Process Control</td>
</tr>
<tr>
<td>SPQM</td>
<td>Supplier Parts Quality Management</td>
</tr>
<tr>
<td>SQAM</td>
<td>Supplier Quality Assurance Manual</td>
</tr>
<tr>
<td>SQRTF</td>
<td>Supplier Quality Requirements Task Force</td>
</tr>
<tr>
<td>TC</td>
<td>Technical Comitee</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>TGA</td>
<td>Trägergemeinschaft für Akkreditierung</td>
</tr>
<tr>
<td>TQC</td>
<td>Total Quality Control</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>TS</td>
<td>Technical Specification</td>
</tr>
<tr>
<td>TÜV</td>
<td>Technischen Überwachungsverein</td>
</tr>
<tr>
<td>UGA</td>
<td>Umweltgutachterausschusses</td>
</tr>
<tr>
<td>UM</td>
<td>Umweltmanagement</td>
</tr>
<tr>
<td>UMS</td>
<td>Umweltmanagementsystem</td>
</tr>
<tr>
<td>UmweltHG</td>
<td>Umwelthaftungsgesetz</td>
</tr>
<tr>
<td>UVV</td>
<td>Unfallverhütungsvorschriften</td>
</tr>
<tr>
<td>VDA</td>
<td>Verband der Automobilindustrie</td>
</tr>
<tr>
<td>VDI</td>
<td>Verein Deutscher Ingenieure</td>
</tr>
<tr>
<td>VV</td>
<td>Verbesserungsvorschlag</td>
</tr>
<tr>
<td>WHG</td>
<td>Wasserhaushaltsgesetz</td>
</tr>
</tbody>
</table>
Einleitung

1 Einleitung

1.1 Problemstellung und Stand der Technik

Als nationaler wie internationaler Standard kann heute gelten, dass ein funktionierendes Qualitätsmanagementsystem in einem Unternehmen installiert werden muss, um sicherzustellen, dass die Produkte allen an sie gestellten Anforderungen entsprechen. [2], [3]

Gegenwärtig liegen für die spezifischen Bedingungen der Automobilzulieferer keine branchenspezifischen Vereinheitlichungsvorschriften für den Aufbau derartig umfassender Dokumentationen vor. Durch eine integrierte Vorgehensweise könnten jedoch durch Doppelungen bedingte, unnötige Aufwendungen vermieden, die Wirtschaftlichkeit eines Unternehmens gesteigert und damit der Unternehmenserfolg gesichert werden.

Der Stand der Technik bezüglich zertifizierungsfähiger Umweltmanagementsysteme mit speziellem Bezug zur Automobil- bzw. Automobilzulieferindustrie ist dahingehend geprägt, dass es keine Managementsysteme gibt, die vergleichbar mit ausgewählten Qua-

Einleitung

1.2 Zielsetzung und Vorgehensweise

Mit Hilfe dieser Arbeit soll es gelingen, eine Harmonisierung der bestehenden Managementsysteme (Qualität, Umwelt und Arbeitsschutz-/Sicherheit) speziell für die Automobilzulieferindustrie zu erlangen und eine entsprechende Synopse zu entwickeln, die den Anforderungen dieser Branche gerecht wird. Des Weiteren sollen strukturoptimierte Qualitätstechniken im Bereich Wissensgenerierung und -vermittlung erarbeitet werden. Hauptaugenmerk wird auf kleine und mittlere Unternehmen (KMU) gelegt.

Tabelle 1: Normative Anforderungen an verschiedene Teilmanagementsysteme

<table>
<thead>
<tr>
<th>Qualitätsmanagement</th>
<th>Umweltmanagement</th>
<th>Arbeitsschutz-/Sicherheitsmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDA 6.1</td>
<td>EMAS II</td>
<td>BSI-OHSAS 18001:1999</td>
</tr>
<tr>
<td>QS 9000</td>
<td></td>
<td>SCC-Management</td>
</tr>
<tr>
<td>ISO/TS 16949:2002</td>
<td></td>
<td>OHRIS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LASI</td>
</tr>
</tbody>
</table>

Die Erfüllung normativer Anforderungen ist nur eine Herausforderung, der sich Unternehmen derzeitig stellen müssen. Es entspricht der aktuellen Situation, dass sich heutige Unternehmen des Weiteren vielfältigen technischen und organisatorischen Anforderungen bei der Bewältigung verschiedener Prozesse (siehe Bild 1) gegenüber stehen, die zur Sicherstellung eines hohen Qualitätsniveaus der gelieferten Produkte beitragen.
Für die Lösung ausgewählter technischer und organisatorischer Anforderungen an ein modernes Unternehmen werden in der Arbeit innovative, prozessintegrierte und aufgaben spezifische Qualitätstechniken vorgestellt. Bei der Auswahl der zu entwickelnden Techniken (Betriebliches Vorschlagswesen (BVW) und CBT-Programme) wurden gezielt die Belange von KMU berücksichtigt, wobei festzustellen ist, dass diese Ergebnisse auch von Großunternehmen genutzt werden können.

2 Grundlagen und Zweck von Managementsystemen

Des Weiteren beschreibt die Norm im Abschnitt 3.2.2: „Managementsystem als System zum Festlegen von Politik und Zielen sowie zum Erreichen dieser Ziele.“

![Bild 2: Kurzübersicht über das System der rechtlichen Regelungen](image)

Den Aufbau eines Managementsystems, z.B. des Qualitätsmanagementsystems zeigt Bild 3 [7]
Begriffliche Erläuterungen:

- **Handbuch**
 In einem (Qualitätsmanagement-)Handbuch (QMH) werden allgemeingültige Vorgehensweisen der Organisation dargestellt, die die Leistungsfähigkeit gegenüber potentiellen Kunden verdeutlichen sollen. Diese Unterlagen sind größtenteils für die Kundeninformation gedacht.

- **Verfahrensanweisung**
 Die (Qualitätsmanagement-)Verfahrensanweisung (QMVA) ist eine übergreifende Beschreibung und Festlegung des Arbeitsablaufes und Qualitätsstandards. Diese Anweisung ist detailliert und aus ihr erfolgt die Arbeitsanweisung als Untermenge. Sie wird dokumentiert.

- **Arbeitsanweisung**
 Die (Qualitätsmanagement-)Arbeitsanweisung (QMA) ist bereichsbezogen und stellt eine Untermenge der Verfahrensanweisung dar. Sie legt die einzelnen Schritte eines Arbeitsablaufes fest. Durch die Arbeitsanweisungen werden kontinuierliche Arbeitsabläufe unter bestimmten Bedingungen sichergestellt. In ihr ist jeder Arbeitsschritt dokumentiert.

Bild 4: Interne und externe Einflussgruppen

Bild 5: Sicherheit durch Anwendung des Managementsystems
3 Qualitätsmanagement

So gibt Hermann [14] an:

- **Qualität**: „Güte, Beschaffenheit, Sorte“

Um sich von einem zu eng an den jeweiligen Zusammenhang gebundenen Qualitätsbegriff zu lösen, kann man zunächst feststellen: [15]

- Qualität repräsentiert Eigenschaften, die einem Produkt oder Verfahren immanent oder beigegeben sind.
- Qualität ist einer der Maßstäbe, mit dem der Kunde seine Kaufentscheidung herbeiführt.
- Qualität ist ein Faktor, der in intensiver Wechselwirkung mit der Wettbewerbssituation und Leistungsfähigkeit eines Anbieters steht.

Erst der Vergleich des Anspruchsbündels mit dem Angebot des Lieferanten erzeugt beim Kunden ein Urteil über die Qualität des Produktes. Qualität ist also mehr als nur die Herstellung eines fehlerfreien Produktes. Des Weiteren steht Qualität auch nicht nur dafür, bestimmte absolute Merkmale des Produktes zu perfektionieren, sondern die vom Kunden relativ gewünschten Merkmale müssen in der entsprechenden Ausprägung gestaltet sein, um damit die Zukunft des Unternehmens zu sichern.

Bernd Pischetsrieder vertritt in der Volkswagen AG folgenden Standpunkt: [17]

„Permanente Steigerung der Qualität für eine bessere Erfüllung der Kundenwünsche bei gleichzeitiger Sicherung der langfristigen Wirtschaftlichkeit im Interesse der Anteilseigner am Unternehmen.“

Die DIN EN ISO 9000:2000 definiert den Begriff „Qualität“ wie folgt:

„Grad, in dem ein Satz inhärenter Merkmale Anforderungen erfüllt.“

Anmerkung 1: Die Benennung „Qualität“ kann zusammen mit Adjektiven wie schlecht, gut oder ausgezeichnet verwendet werden.

Eng mit dem Begriff der Qualität hängt der Begriff der „Zuverlässigkeit“ zusammen. „Zusammenfassender Ausdruck zur Beschreibung der Verfügbarkeit und ihrer Einflussfaktoren: Funktionsfähigkeit; Instandhaltbarkeit und Instandhaltungsbereitschaft.“

Die Zuverlässigkeit ist Bestandteil der Qualität in Hinblick auf das Verhalten der Einheit während oder auch nach vorgegebenen Zeitspannen unter festgelegten Anwendungsbedingungen. Zuverlässigkeit bezeichnet also das Langzeitverhalten. Damit sind verschiedene Qualitätsarten zu betrachten, über die Bild 7 einen Überblick gibt.

Bild 7: Qualitätsarten

Damit ergeben sich aus dem Qualitätsbegriff die folgenden Grundsätze [18]:

- Qualität ist nichts Absolutes, sondern stets die Beschaffenheit einer Einheit in Bezug auf gegebene Erfordernisse und vorgegebene Forderungen.
- Qualität ist keine physikalische Größe, sie ist also nicht messbar. Messbar ist allenfalls der Grad der Erfüllung von Einzelforderungen.
- Qualität ist kein bivalenter Begriff. Man kann also einer Einheit nicht das Vorhandensein bzw. Fehlen von Qualität attestieren. Vielmehr sind alle Ausprägungen zwischen "sehr gut" und "sehr schlecht" möglich.
- Qualität lässt sich auch als Ausmaß der Anpassung des Ergebnisses einer Tätigkeit an die vorgegebenen Anforderungen interpretieren (siehe Bild 8). [19]
3.1 Geschichtliche Entwicklung

Die Ursprünge der Qualitätssicherung können auf zwei Wurzeln zurückgeführ werden. Einmal die mit der Arbeitsteilung entstehende Frage der Haftung für mangelhafte Leistungen und zum anderen die Notwendigkeit für einen freien Warenaustausch festgelegte und reproduzierbare Maßeinheiten zu besitzen.

Stellvertretend für die Frage der Haftung sei aus dem Codex Hammurabi zitiert (Hammurabi, König von Babylonien, 1728 bis 1686 v. Christus):

„Wenn ein Baumeister ein Haus baut für einen Mann und macht seine Konstruktion nicht stark, sodass es einstürzt und verursacht den Tod des Bauherrn, dieser Baumeister soll getötet werden."

Dagegen nehmen sich selbst äußerst verbraucherfreundliche Urteile in Fragen der Produkthaftung – wie zum Teil in den USA – sehr zurückhaltend aus.

- In Mesopotamien dienten Rollsiegel auf Wein- und Ölkrügen als Ursprungs- und Qualitätskennzeichen.
- Im Mittelalter regelten die Zunftordnungen Ausbildung und Verantwortung der Gesellen und Meister.
- Im 19. Jahrhundert werden mit der Meterkonvention (Paris 1875) erstmals internationale, reproduzierbare und nachprüfbare Maßeinheiten festgelegt.
- Das englische Gesetz über die „Kennzeichnung von aus fremden Ländern in das Vereinigte Königreich eingeführter Waren“ (1887) sollte die englischen Verbraucher (und damit auch die englischen Fabrikanten) vor „billigen“ fremden Erzeugnissen schützen. Erreicht wurde das Gegenteil, „made in Germany“ entwickelte sich damals zu einem Qualitätszeichen.

Bis Anfang dieses Jahrhunderts blieben in der industriellen Produktion die einzelnen Fertigungsschritte zur Herstellung eines Produktes - wie in den Manufakturen vor der industriellen Revolution - hauptsächlich im Verantwortungsbereich eines Werkers, der damit auch die Qualität seiner eigenen Arbeit prüfen konnte.

Bild 9: **Entwicklungsstufen des Qualitätsmanagements**

Mit Beginn der Massenproduktion wurde immer deutlicher, dass eine 100%-Kontrolle der gefertigten Produkte zu aufwendig ist. Diese wurde durch eine Teilkontrolle auf der Basis statistischer Verfahren ersetzt, um die Leistungsfähigkeit und den Durchsatz der Prüfabteilungen zu erhöhen. [20]

- Um 1970 entstehen in Großbritannien und Kanada nationale, branchenübergreifende Normen für die Qualitätssicherungssysteme (BS 5750/CAN-Z299).
- Seit 1987 gilt die internationale Normenreihe ISO 9000 (Modelle für Qualitätssicherungssysteme).
1994 erscheint die erste Überarbeitung der Normenreihe DIN EN ISO 9000 als deutsche, europäische und internationale Norm. DIN (Deutsche Industrie Norm), herausgegeben vom „Deutschen Institut für Normung e. V.“, EN bezieht sich auf „Europäische Norm“ und die Abkürzung ISO bezieht sich auf „International Standardization Organization“.

1995 erscheint DIN EN ISO 8402, Qualitätsmanagement, Begriffe.

2000 wird im Dezember die zweite Überarbeitung der DIN EN ISO 9000, 9001 und 9004 vorgestellt.

Bild 10: Zusammenhang zwischen Q-Denken und Q-Techniken

Entsprechend des veränderten Qualitätsverständnisses (siehe Bild 10) ersetzt der Begriff Qualitätsmanagement den bisherigen Begriff Qualitätssicherung. Dem Inhalt nach umfasst Qualitätsmanagement „alle Tätigkeiten des Gesamtmanagements, die im Rahmen des Qualitätsmanagements, die Qualitätsplanung, Qualitätslenkung, Qualitätssicherung, Qualitätsmanagementdarlegung und Qualitätsverbesserung verwirklichen“. [21]

Neben dieser offiziellen Definition finden sich in der Literatur auch weitere, praxisbezogene Formulierungen. So versteht Pfeifer [22] unter Qualitätsmanagement vor allem „das ständige Bemühen aller Mitarbeiter in einer Organisation oder Unternehmung, die externen und internen Kundenerwartungen zu verstehen, zu erfüllen und zu übertreffen“.

Kamiske betont, dass die oberste Leitung eine besondere, nicht delegierbare Verantwortung für das Qualitätsmanagement hat. [23] Er sieht die Verantwortung insbesondere darin, dass die Leitung für die aktive Umsetzung auf allen Hierarchiestufen Sorge zu tragen hat. Werden beide Aussagen zusammengefasst, könnte es heißen:

Die Geschäftsleitung hat eine besondere Verantwortung dafür, dass sich alle Mitarbeiter für die Qualität verantwortlich fühlen.

[21] [22] [23]
In Bild 11 ist zu erkennen, dass Unternehmen auf verschiedene Einflüsse aus ihrer Umgebung reagieren müssen. Daher kann auch die wachsende Bedeutung des Qualitätsmanagements für Unternehmen auf mehrere Ursachen zurückgeführt werden. Eine dieser Ursachen ist die immer stärker werdende Entwicklung der Produkt- und Dienstleistungsqualität zu einem der wesentlichen Wettbewerbskriterien. Unterstützt wird diese Entwicklung beispielsweise durch den Wandel von nachfragegeprägten Verkäufer- zu von Überangebot beherrschten Käufermärkten (siehe Bild 12) und durch die um sich greifende Internationalisierung, die die Märkte zusammenwachsen lässt. [25]

Bild 11: Einflüsse auf eine Organisation und deren QM-System

<table>
<thead>
<tr>
<th>Phase</th>
<th>Wiederaufbau 1945</th>
<th>Konsolidierung 1960</th>
<th>Qualität 1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markt</td>
<td>Hersteller</td>
<td>Übergang</td>
<td>Käufer</td>
</tr>
<tr>
<td>Ziele</td>
<td>Wiederaufbau, Erfüllung von Grundbedürfnissen</td>
<td>Wohlstand, Sicherheit, Prestige</td>
<td>Intakte Umwelt, Beschäftigung</td>
</tr>
<tr>
<td>Kennzeichen</td>
<td>Mangel an Gütern</td>
<td>Große Nachfrage, gutes Angebot, Wettbewerb</td>
<td>Überangebot, Verdrängungswettbewerb</td>
</tr>
<tr>
<td>Primäres Kaufargument</td>
<td>Verfügbarkeit</td>
<td>Verfügbarkeit, Bedarf, Qualität</td>
<td>Qualität, Funktionalität, Wertbeständigkeit</td>
</tr>
</tbody>
</table>

Bild 12: Entwicklung vom Hersteller- zum Käufermarkt
Des Weiteren steigt insbesondere in repressiven Wirtschaftslagen der Druck, kundenge-
rechtete Qualität kostengünstig herzustellen, da die Kunden vermehrt auf einen günstigen
Preis achten, bei kaum verändertem Qualitätsanspruch. [26] Dies zu realisieren ist ohne
ein funktionierendes Qualitätsmanagement kaum möglich.

Eine weitere Ursache liegt in dem Trend der zunehmenden unternehmerischen Ver-
flechtung, der sich zum Beispiel in der Automobilbranche sehr gut beobachten lässt.
Dort sind es die Trends Konzentration auf Systemlieferanten, Verlagerung von Wert-
schöpfungs- und Entwicklungstiefe und enge kooperative Zusammenarbeit, die die Lie-
feranten immer stärker in das Endprodukt mit einbeziehen. [27] Diese derart enge Zu-
sammenarbeit zwischen Lieferanten und Kunden erfordert großes Vertrauen in die Zu-
verlässigkeit des Partners, sodass es nur verständlich ist, dass der Partner sein Risiko
zur begrenzen versucht, z.B. mit der Forderung nach einem Nachweis über ein funktio-
nierendes Qualitätsmanagementsystem.

Sich mit dem Thema Qualität strukturiert zu befassen, ist auch aus einem anderen, nicht
zu unterschätzenden Grund für Unternehmen wichtig. Wenn ein Unternehmen einmal
aufgrund mangelhafter Qualität einen schlechten Ruf hat, wird es diesen nur schwer und
unter großen Aufwendungen wieder los. Die Folgen für den Anbieter (siehe Bild 13) auf-
grund unzufriedener Kunden hat das White House Office of Customer Affairs untersucht.
[28]

Bild 13: **Effekte unzufriedener Kunden**

Demnach gibt es drei Effekte, die letztendlich dazu führen, dass jeder unakzeptierte
Fehler zu einem Rückgang des Verkaufs volumens führt. Erstens meidet ein Großteil un-
zufriedener Kunden in Zukunft das Produkt, zweitens teilt der unzufriedene Kunde sei-
nen Unmut einer Vielzahl von Personen seines Umfeldes mit, drittens aber selten dem
Hersteller selbst. Die Folgen für die Umsatzentwicklung des Anbieters sind leicht vor-
stellbar.
Qualitätsmanagement

Die wesentlichen Änderungen im Bereich des Qualitätsmanagements, die sich in den letzten Jahren vollzogen haben, lassen sich in drei Kernpunkte zusammenfassen: [29]

- möglichst weitgehende Vorverlagerung von Qualitätsprüfungen mit dem Ziel, Aus- schuss und Nacharbeit nicht qualitätskonformer Produkteinheiten von vornherein zu vermeiden und einer Steigerung des Qualitätsbewusstseins
- zunehmende Anwendung statistischer Verfahren schon bei der Qualitätsplanung
- zunehmende Automatisierung des Qualitätsmanagements und Einführung computergestützter Mess- und Auswertetechniken

Diesen enormen Anforderungen können Unternehmen mit einem systematischen Qualitätsmanagement begegnen, deshalb liegen die Vorteile klar auf der Hand:

- verbesserte Wettbewerbsfähigkeit (national und international)
- Kundenorientierung
- Motivation (bessere Kommunikation und Information)
- Mitarbeiterführung
- Sicherheit (Produkthaftung)
- gesteigerte Wirtschaftlichkeit und Rentabilität (klare Abläufe, Fehlerminimierung durch Fehlerverhütung und frühzeitige Fehlererkennung, Reduzierung von Produktionslaufzeiten)
- kontinuierlicher Verbesserungsprozess (KVP)
- Risikovorsorge (Ausschalten von Organisationsverschulden nach KonTraG)

Während das Qualitätsmanagement alle Tätigkeiten des Managements umfasst, die der Erreichung der Qualitätspolitik und –ziele dienen, beschreibt das Qualitätsmanagementsystem (QMS) die dafür notwendigen Systemelemente und deren Beziehungen zueinander. Es nennt somit Verfahren und Prozesse, Verantwortlichkeiten und Ressourcen und deren zweckmäßige Verknüpfung im Sinne der Qualitätspolitik.

Vorteil eines QMS ist vor allem die Sicherstellung einer kundengerechten Entwicklung und Produktion. Dies wird vorrangig durch Schaffung qualitätsfähiger Prozesse unter wirtschaftlichen Gesichtspunkten erreicht. [30], [31]

QMS bilden in der gegenwärtigen Zeit in fast allen Bereichen der Wirtschaft eine unabdingbare Voraussetzung, um die Wettbewerbsfähigkeit von Unternehmen zu gewährleisten. Der Inhalt von QMS leitet sich aus der historischen Entwicklung der Qualitätsarbeit im Unternehmen ab.

Das Bild 14 zeigt den in der Vergangenheit begonnenen Wandel im QM-Denken.

Bild 14: Wandel des QM-Denkens

Auszdruck dieser Bemühungen um eine Null-Fehler-Produktion sind Qualitätsphilosophien wie Null-Fehler-Programm (Zero Defects Concept), Total Quality Control (TQC) und Total Quality Management (TQM).
3.1.1 Null-Fehler-Programm (Zero Defects Concept)

Der Amerikaner Philip B. Crosby entwickelte das Null-Fehler-Programm (Zero Defects Concept), das auf eine fehlerfreie Produktion ohne Ausschuss und Nacharbeit abzielt. Aus seiner Erkenntnis, dass in den Unternehmen vielfach Praktiken vorliegen, die dieser Zielsetzung entgegenstehen, wie z. B. die Festlegung von Fehlerquoten, das Akzeptieren von Nacharbeit als unvermeidbar sowie die Einstellung, dass die Fertigung von Qualität Kosten verursacht, fordert er einen unternehmensweiten Umschwung, der auf vier Eckpfeilern beruht: [35]

- Qualität wird als Übereinstimmung mit Anforderungen definiert
- Grundprinzip der Qualitätserzeugung ist Vorbeugung
- Null-Fehler muss zum Standard/Normalfall werden
- Maßstab für Qualität sind die Kosten der Nichterfüllung von Anforderungen

3.1.2 TQC - Total Quality Control

Der Amerikaner Armand V. Feigenbaum formulierte 1961 das Konzept TQC. TQC ist eine das gesamte Unternehmen umfassende Qualitätsstrategie, die sich an den Kundenbedürfnissen ausrichtet. Sämtliche Unternehmensvorgänge tragen zur Erfüllung von Kundenbedürfnissen bei. Daraus folgt, dass jeder Mitarbeiter für Qualität verantwortlich ist. Charakteristische Elemente von Total Quality Control sind: [36], [37], [38], [39]

- Definition und klarer Aufbau von Qualitätspolitik und -zielen
- Ausrichtung an den Kundenbedürfnissen
- gezielte Aktivitäten zur Umsetzung der Qualitätspolitik und zur Erreichung der Qualitätsziele
- unternehmensweite Integration der qualitätsbezogenen Aktivitäten
- eindeutige Übertragung von Aufgaben und Verantwortung
- Festlegung der erforderlichen Ausstattung
- spezielle Qualitätsmanagement-Maßnahmen der Lieferanten
- Festlegung von wirkungsvollen Qualitätsinformationen, Prozessen und Überwachungsmethoden
- hohes Qualitätsbewusstsein, unternehmensweite Motivation und Qualifikation der Mitarbeiter
- Einführung von Messgrößen als Qualitätsstandard
- Einführung positiv wirkender Korrekturmaßnahmen
- kontinuierliche Selbstüberprüfung, Regelkreise, Ergebnisanalysen und Soll-Ist-Vergleiche
- Durchführung periodischer Systemaudits
3.1.3 TQM - Total Quality Management

Unter dem Aspekt des TQM ist die ständige Qualitätsverbesserung eine Aufgabe, die die Geschäftsleitung als Organisationsziel vorgibt und verantworten muss. Qualität wird damit ein *strategisches Unternehmensziel*. Die auf der Mitwirkung aller ihrer Mitglieder basierende Managementmethode, die die Qualität in den Mittelpunkt stellt und durch Zufriedenstellung der Kunden auf langfristigen Geschäftserfolg sowie auf Nutzen für die Mitglieder der Organisation und für die Gesellschaft zielt. TQM wird als weitreichendster Qualitätsansatz angesehen, der für ein Unternehmen denkbar ist. [40]

Bild 15: Grundpfeiler des TQM

Jeder Buchstabe steht für einen sehr wichtigen Inhalt: [41], [42]

- **T** steht für Total, d.h. Einbeziehen aller Mitarbeiterinnen/Mitarbeiter, aber auch ganz besonders der Kunden und Lieferanten, weg vom isolierten Funktionsbereich, hin zum ganzheitlichen Denken
- **Q** steht für Quality, Qualität der Arbeit, der Prozesse und des Unternehmens, aus denen heraus die Qualität der Produkte wie selbstverständlich erwächst
- **M** steht für Management und hebt schließlich die Führungsaufgabe „Qualität“ und die Führungsqualität hervor. Insofern kann TQM aus dem Blickwinkel der Wissenschaft als Führungslehre, aus der Sicht der Unternehmen als Führungsmodell gelten (siehe Bild 15).
Das Bild 16 zeigt die vollständige Ausrichtung aller Aktivitäten des Unternehmens auf überlegene Zuverlässigkeit und Qualität aus Kundensicht in Übereinstimmung mit den anderen Unternehmenszielen. Total Quality Management ist als ein umfassendes Qualitätsmanagementkonzept zu verstehen, welches folgende Aspekte beinhaltet:

- Kundenorientierung auf interne und externe Kunden
- Mitarbeiterorientierung durch Zielvereinbarungen
- Verantwortung und Vorbildfunktion des Managements
- Abgrenzung von Aufgaben, Kompetenzen und Verantwortung
- Prävention von Fehlern
- Qualitätsprüfung, Korrektur- und Vorbeugemaßnahmen
- kontinuierliche Verbesserung von Produkten und Prozessen
Qualitätsmanagement

- Prozessorientierung und Orientierung auf Unternehmensbereiche
- Integration der Qualitätspolitik in die Unternehmenspolitik
- Integration anderer Managementkonzepte

Ein Qualitätsmanagement, das die Aspekte des TQM beinhaltet, trägt dazu bei, dass langfristig alle Unternehmensziele verwirklicht werden. [43] So ist es z.B. möglich, dass das Unternehmensimage nachhaltig verbessert, die Kosten reduziert und der Unternehmenserfolg nicht nur gesichert, sondern darüber hinaus gesteigert werden kann. [44]

Tabelle 2: Traditionelle Qualitätssicherung versus TQM

<table>
<thead>
<tr>
<th>Traditionelle Qualitätssicherung</th>
<th>Total Quality Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>eindimensionaler, herstellerorientierter Qualitätsbegriff</td>
<td>erweiterter, mehrdimensionaler Qualitätsbegriff</td>
</tr>
<tr>
<td>enger Kundenbegriff</td>
<td>erweiterter Kundenbegriff: intern und extern</td>
</tr>
<tr>
<td>ergebnisorientierte Qualitätspolitik</td>
<td>präventivorientierte Qualitätspolitik</td>
</tr>
<tr>
<td>Qualität ist Aufgabe weniger Mitarbeiter</td>
<td>Qualität ist Aufgabe aller (Mitwirkung)</td>
</tr>
<tr>
<td>produkt- bzw. fertigungsbezogene Qualitätssicherung</td>
<td>unternehmensweite Qualitätsförderung</td>
</tr>
<tr>
<td>Einhaltung von Toleranzen</td>
<td>systematische Qualitätsforderung mit dem Ziel „Null-Fehler“</td>
</tr>
<tr>
<td>Qualitätssicherung als operative Aufgabe</td>
<td>Qualität als strategische Aufgabe</td>
</tr>
<tr>
<td>Qualität als derivatives Unternehmensziel</td>
<td>Qualität als wesentliches Unternehmensziel</td>
</tr>
<tr>
<td>Unternehmen als geschlossenes System</td>
<td>Unternehmen als offenes System</td>
</tr>
<tr>
<td>Qualität und Produktivität als (scheinbarer) Widerspruch</td>
<td>Produktivität durch Qualität</td>
</tr>
<tr>
<td>funktionaler Charakter der Qualitätspolitik</td>
<td>integrativer Charakter der Qualitätspolitik</td>
</tr>
</tbody>
</table>

In Europa hat die European Foundation for Quality Management (EFQM), eine Stiftung namhafter Industrieunternehmen, 1991 ein TQM-Modell für Europa entwickelt, das auf Basis der neun Kriterien:
- Führung,
- Mitarbeiter,
- Politik und Strategie,
- Partnerschaften und Ressourcen,
- Prozesse,
- Mitarbeiter - Ergebnisse,
- Kunden - Ergebnisse,
- Gesellschaft - Ergebnisse und
- Schlüsselleistungen - Ergebnisse
aufgebaut ist und der jährlichen Verleihung des European Quality Award (EQA) an europäische Spitzenunternehmen auf dem Gebiet des TQM dient. [45]

Ziel:
Markante Verbesserung von Qualität und Erträgen durch Kostensenkungen bei Produkten und Dienstleistungen, verbunden mit einer Verbesserung der Wettbewerbssituation. Zielerreichung durch besseres Nutzen menschlicher, technischer und organisato-
rischer Ressourcen. Ein zukunftsweisendes Qualitätsmanagement muss daher grund-
sätzlich im Sinne eines Total Quality Management verstanden werden. Bild 17 zeigt die
Wechselbeziehungen von Qualitätsplanung, Qualitätslenkung, Qualitätsprüfung und
Qualitätsmanagementdarlegung mit TQM als Ausgangspunkt.

Bild 17: Wechselbeziehungen im QM mit TQM als Ausgangspunkt

3.2 Anforderungen an das Qualitätsmanagement

Organisationen des herstellenden Gewerbes sehen sich auf nationalen wie internatio-

talen Märkten einem immer stärker werdenden Qualitätswettbewerb ausgesetzt. Mehr

denn je entscheiden Qualitätssicherungen der Produktionsmittel, Qualität der Erzeugnisse

und die Effizienz der gesamten Qualitätsmanagementaktivitäten über Wachstum und

Bestand der Organisation. Des Weiteren stiegen die gesetzlichen Forderungen in den

letzten Jahren kontinuierlich.

Bild 18: Anforderungen an das Qualitätsmanagement
Da Managementaufgaben und -ziele langfristige Wirkung haben müssen, ist die Extrapolation des Ist-Zustandes allein kein geeignetes Planungsmittel mehr. Vielmehr müssen die Auswirkungen möglicher Szenarien auf das QM betrachtet und geprüft werden. Als Folge solcher Betrachtungen können sich die Zielsetzungen zur Entwicklung wettbewerbsfähiger Produktionskonzepte verändern, beispielsweise in Richtung auf eine Höherbewertung der Qualität (siehe Bild 19).

Bild 19: Gewichtung der Zielsetzungen bei Produktionskonzepten

Das QM als die Gesamtheit aller qualitätsbezogenen Tätigkeiten und Zielsetzungen ist in die Funktionen Qualitätsplanung, Qualitätslenkung, Qualitätsprüfung, Qualitätsverbesserung, QM-Darlegung und Qualitätsaudit gegliedert (siehe Bild 20). [46]

Bild 20: Funktionen des Qualitätsmanagements
Qualitätsmanagement

- Qualitätsplanung
Die Aufgabe der Qualitätsplanung ist das Auswählen, Klassifizieren und Gewichten der Qualitätsmerkmale sowie das Konkretisieren der Qualitätsforderungen unter Berücksichtigung von Anspruchsniveau und Realisierungsmöglichkeiten. [47], [48] Die Qualitätsplanung ist der Teil des QM, der auf das Festlegen der Qualitätsziele und der notwendigen Ausführungsprozesse sowie der zugehörigen Ressourcen zur Erfüllung der Qualitätsziele gerichtet ist. Das Ergebnis der Planung muss dokumentiert werden.

- Qualitätslenkung und Qualitätsprüfung
Die Qualitätslenkung überwacht und korrigiert die Realisierung einer Einheit mit dem Ziel, die Qualitätsforderung zu erfüllen. Dabei werden die Ergebnisse der Qualitätsprüfung mit den Vorgaben aus der Qualitätsplanung verglichen und bei Abweichungen (Fehlern) Korrekturmaßnahmen eingeleitet. Durch die Qualitätsprüfung wird festgestellt, inwieweit eine Einheit die Qualitätsforderungen erfüllt. Ermittelt werden die Ist-Werte der Produkt- und Prozessqualität.

- Qualitätsverbesserung

Bild 21: Operativer und evolutionärer Qualitätsregelkreis
Qualitätsmanagementdarlegung

Die Qualitätsmanagementdarlegung beschreibt alle geplanten und systematischen Tätigkeiten des Qualitätsmanagements, um Vertrauen zu schaffen, dass ein Produkt die festgelegten und vorausgesetzten Erfordernisse erfüllt. Unterschieden wird zwischen interner QM-Darlegung für die Unternehmensführung und externer QM-Darlegung für Kunden und andere, wie z. B. Behörden oder Zertifizierungsgesellschaften.

Qualitätsaudit

Das Qualitätsaudit ist eine systematische und unabhängige Untersuchung, um festzustellen, ob die qualitätsbezogenen Tätigkeiten und die damit zusammenhängenden Ergebnisse den geplanten Anordnungen entsprechen, und ob diese Anordnungen wirkungsvoll durchgesetzt und geeignet sind, die Ziele der Qualitätspolitik zu erreichen. [50]

Qualitätsmanagementkreis

Der Qualitätsmanagementkreis stellt die nicht immer überschneidungsfreie Abfolge von Qualitätsplanung, Qualitätslenkung und Qualitätsprüfung dar (siehe Bild 22). [51]
3.3 Normungen für Qualitätsmanagementsysteme

Der Vorgang der Normung und dessen Ergebnisse, die Normen an sich, spielen im Bereich des Qualitätsmanagements eine große Rolle. Sie dienen als eindeutige Verständigungsgrundlage über Fachgebiete und Branchen hinweg, indem bestimmte Sachverhalte wie Verfahren und Ergebnisse abstrahiert festgehalten werden.

Der Begriff der Normung ist an sich auch genormt, und zwar in der DIN EN ISO 820 Teil 1, in der es heißt:

Petrick [52] und Reihlen [53] interpretieren diese Aussage und schlussfolgern, dass Normen:

- durch Vereinheitlichung der Allgemeinheit nutzen
- als Informationsquelle über den Stand der Technik dienen und somit ein Hilfsmittel im Technologietransfer darstellen
- als internationale Normen Handelshemmnisse beseitigen
- Schutzfunktionen wahrnehmen, z.B. im Umweltmanagement u.a..

Normen können im Allgemeinen dem Inhalt nach in drei verschiedene Kategorien eingeteilt werden:

- **Verfahrensnormen** – durch diese Normenart werden bestimmte Abläufe festgelegt. Die einzelnen Festlegungen stellen die Qualitätsanforderungen an diesen Ablauf dar.
- **Produktnormen** – hier werden Festlegungen zu Merkmalen und Merkmalswerten von Produkten getroffen.
Diese Festlegungen bedingen die Einzelanforderungen an das Produkt. Um die gesamten Qualitätsanforderungen an Systeme, Prozesse oder Produkte festzustellen, reicht es jedoch nicht, nur die Normen zu beachten. Für ein Gesamtbild müssen zusätzlich auch gesetzliche Forderungen, Lieferverträge, firmeninterne Festlegungen und indirekt identifizierbare Forderungen wie Markterfordernisse, ethische, kulturelle und religiöse Normen berücksichtigt werden.

Zum Aufbau von QMS existiert gegenwärtig ein umfassendes Vorschriftenwerk. In den folgenden Kapitelabschnitten wird daher näher auf ausgewählte Normen eingegangen.

3.3.1 DIN EN ISO 9001:2000

3.3.1.1 Aufbau und Anforderungen

- nichtproduzierende Unternehmen haben sich nur schwer wieder gefunden
- die Struktur der Norm war nicht mit der anderer Normen wie z.B. DIN EN ISO 14001:1996 (Umweltmanagement) kompatibel
- zu komplex für kleine Unternehmen
- fehlende Prozessorientierung

Die Kritik wurde ernst genommen und die Normenfamilie drastisch überarbeitet. Die neue Normenreihe von 2000 erschien im Dezember 2000 und gliedert sich in:

- DIN EN ISO 9000: QM-Systeme, Begriffe und Konzepte
- DIN EN ISO 9001: QM-Systeme, Forderungen
- DIN EN ISO 9004: QM-Systeme, Leitfaden
- DIN EN ISO 19011: Leitfaden für Umwelt- und Qualitätsmanagementsystem-Audits

Wesentliche Änderungen gegenüber der Norm, Ausgabe 1994, sind:

- eine zukunftsweisende, prozessorientierte Struktur bietet eine Annäherung an das EFQM-Modell
- eine verbesserte Kompatibilität mit anderen Managementsystemen, insbesondere zur DIN EN ISO 14001, der Normengrundlage für Umweltmanagementsysteme
- Erleichterung der Anwendung in allen Branchen und für alle Arten von Produkten einschließlich Dienstleistungen durch verständlichere Darstellung

Bild 24: Nutzen der Prozessorientierung

Im Zusammenhang mit der Prozessorientierung ist auf die notwendige Ausrichtung hinsichtlich der Belange der Mitarbeiter und der Kunden hinzuweisen. Denn „der optimale Kundennutzen muss den Kunden erreichen (Kundenorientierung), das optimale Mitarbeiter-Know-how muss dafür eingesetzt werden (Mitarbeiterorientierung), die ablaufenden Geschäftsprozesse müssen den Mitarbeitern erlauben, kundenorientiert zu agieren (Prozessorientierung)“. [58]

Mitarbeiterorientierung bedeutet für ein Unternehmen die Vorgabe von Zielvereinbarungen, Stärkung der Mitarbeiterposition mit Selbststeuerung und Selbstcontrolling, höhere Eigenverantwortung, Qualifikationssteigerung und die Einführung kontinuierlicher Verbesserungen, um letztendlich die Kundenorientierung zu erhöhen und den Kunden
Qualitätsmanagement

an das Unternehmen zu binden. Um flexibel auf die Kundenforderungen und -erwartungen reagieren zu können, ist es notwendig, den Abbau von Hierarchieebenen und z.B. den Aufbau von Centerkonzepten voranzutreiben, um den Kundenbezug herzustellen und somit die Flexibilität zu erreichen, die der Kunde wünscht.

Im Prozessmodell wird zwischen verschiedenen Prozesstypen (siehe Bild 25) unterschieden: [59]

- Führungsprozesse
- Kernprozesse
- Unterstützungsprozesse

Bild 25: Prozesstypen im Prozessmodell

Entsprechend dem Modell eines prozessorientierten QMS (siehe Bild 26) sind die Forderungen der Norm in vier Elemente (statt der bisherigen 20 Elemente) eingeteilt: [60]

- Verantwortung der Leitung (Abschnitt 5)
- Management von Ressourcen (Abschnitt 6)
- Produktrealisierung (Abschnitt 7)
- Messung, Analyse und Verbesserung (Abschnitt 8)

Bild 26: *Modell eines prozessorientierten QMS*

Welche Anforderungen an die vier Elemente eines QMS nach DIN EN ISO 9001:2000 gestellt werden, zeigt Bild 27.

Bild 27: *Anforderungen an QMS nach DIN EN ISO 9001:2000*

- Festlegen der Qualitätspolitik und der Qualitätsziele der Organisation

Tabelle 3: Wesentliche Elemente der Qualitätspolitik

<table>
<thead>
<tr>
<th>Qualitätspolitik eines Unternehmens</th>
</tr>
</thead>
<tbody>
<tr>
<td>im Innenverhältnis</td>
</tr>
<tr>
<td>- Qualität darf nicht zugunsten von Kosten und Terminen vernachlässigt werden</td>
</tr>
<tr>
<td>- Einbeziehung aller Mitarbeiter in den Prozess der ständigen Qualitätsverbesserung</td>
</tr>
<tr>
<td>im Außenverhältnis</td>
</tr>
<tr>
<td>- Wünsche des Kunden</td>
</tr>
<tr>
<td>- erkennen</td>
</tr>
<tr>
<td>- berücksichtigen</td>
</tr>
<tr>
<td>- umsetzen</td>
</tr>
<tr>
<td>- Qualität der Produkte glaubhaft machen</td>
</tr>
</tbody>
</table>

Für die Festlegung der Qualitätspolitik können die QM-Grundsätze als Basis dienen. Die DIN EN ISO 9000:2000 beschreibt Handlungsgrundsätze des modernen Qualitätsmanagements. Werden sie bei der Unternehmensführung berücksichtigt, so tragen sie wesentlich zur Verbesserung der organisatorischen Leistungsfähigkeit bei.

- **Kundenorientierung** - Kundenanforderungen verstehen, erfüllen, übertreffen
- **Führung** - Übereinstimmung herstellen zwischen Zweck und Ausrichtung der Organisation
- **Einbeziehung der Personen** - Mitarbeitermotivation, Einsatz ihrer Fähigkeiten zum Nutzen der Organisation
- **prozessorientierter Ansatz** - Tätigkeiten und Ressourcen als Prozess zu leiten und lenken, erhöht Wirksamkeit und Effizienz
- **systemorientierter Managementansatz** - Erkennen, Verstehen, Leiten und Lenken von wechselwirkenden Prozessen als System
- **ständige Verbesserung** - der Gesamtleistung als permanentes Ziel der Organisation
- **sachbezogener Ansatz zur Entscheidungsfindung** - Wirksame Entscheidungen beruhen auf Analysen von Daten und Informationen.
Qualitätsziele beruhen auf der Qualitätspolitik der Organisation und werden als messbare Größe für die zutreffenden Funktionsbereiche und Ebenen in der Organisation festgelegt. Zu den Qualitätszielen müssen die Ziele gehören, die zur Erfüllung der Forderungen an die Produkte notwendig sind.

- Ermittlung der Prozesse, die für das Erreichen der Qualitätsziele unverzichtbar sind
- Festlegung der Prüfmittel für die Wirksamkeit der einzelnen Prozesse in Hinblick auf Erreichung der Qualitätsziele
- Anwendung der Prüfmittel zur Ermittlung der aktuellen Wirksamkeit der Prozesse
- Festlegung der Mittel zur Verhinderung von Mängeln, Verringerung der Veränderlichkeit und damit Minimierung von Nacharbeit und Abfall
- Suche nach Möglichkeiten der Risikoverringerung und Verbesserung der Effizienz von Prozessen
- Festlegung der Inhalte und Rangfolgen der Verbesserungen, die optimale Ergebnisse bei annehmbarem Risiko ermöglichen
- Planung der Strategien, Prozesse und Mittel zur Umsetzung der Verbesserungen
- Verwirklichung des Plans und Überwachung der Wirkung
- Vergleich der Ergebnisse mit den erwarteten Resultaten
- Bewertung der Verbesserungstätigkeiten mit dem Ziel geeigneter Folgemaßnahmen

3.3.1.2 Ablauf einer Zertifizierung

Die Motivation eines Unternehmens sich zertifizieren zu lassen, kann externe und/oder interne Hintergründe haben. Immer mehr Unternehmen koppeln Verträge mit ihren Lieferanten an einen Nachweis (z.B. Zertifikat), dass diese Qualität organisatorisch beherrschen. Andere Unternehmen lassen sich zertifizieren, obwohl sie in ihrem Markt keinem solchen Druck ausgesetzt sind, da Zertifizierungen dort unüblich sind. Sie sehen in der Prüfung durch eine neutrale Institution eine Chance, ihr eventuell schon bestehendes QMS zu verbessern und gewinnen als eines der ersten zertifizierten Unternehmen einen Wettbewerbsvorteil in ihrer Branche.

Um die Vergleichbarkeit der vergebenen Zertifikate zu gewährleisten, müssen die Zertifizierungsstellen ebenfalls geprüft werden. Die Prüfung der Prüfer, die so genannte Akkreditierung - obliegt in Deutschland der Trägergemeinschaft für Akkreditierungen (TGA GmbH) auf der Grundlage der EN 45012 „General Criteria for Certification Bodies operating Quality System Certification“. [62], [63]

Eine Zertifizierung erfolgt immer im Auftrag der zu zertifizierenden Organisation. Die Zertifizierungsstelle fungiert als Gutachter, indem sie das gelebte Managementsystem vor Ort mit den Anforderungen in der Norm vergleicht. Dieses sogenannte Audit ist jedoch nur der Höhepunkt des umfangreichen Zertifizierungsverfahrens, das aus mehreren Phasen (siehe Bild 28) besteht. [64]
Sollen in eine Zertifizierung mehrere Produktionsstandorte mit einbezogen werden, kann es kostengünstiger sein, jeden einzelnen Standort separat zertifizieren zu lassen, denn falls sich in dem einen Standort eine Veränderung einstellt, erfordert diese Veränderung eine neue Zertifizierung. Im Anhang befindliche Tabellen zeigen den Aufwand und die Kosten für eine Erst- bzw. Wiederholungszertifizierung einer Organisation.

3.4 Qualitätsmanagementsysteme der Automobilindustrie

[Bild 29] zeigt die Pyramide der hierarchischen Zuliefererstruktur in der Automobilindustrie, die sich in Folge der Lean Production Bewegung bildete. [65]
Bild 29: *Pyramide der hierarchischen Automobilzuliefererstruktur*

Welche Forderungen die Automobilhersteller an ihre Zulieferer derzeit stellen, wurde in einer umfangreichen Befragung bei den Automobilherstellern und ausgewählten Zulieferern (Stand per Ende 2003) ermittelt: Die Ergebnisse dieser aktuellen Erhebung sind in Tabelle 4 dargestellt. [66]

Tabelle 4: *Normative Forderungen der Automobilhersteller (Stand Mitte 2003)*

<table>
<thead>
<tr>
<th>Firma</th>
<th>Forderung(-en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DaimlerChrysler AG</td>
<td>ab 01.07.2004 nach ISO/TS 16949:2002</td>
</tr>
<tr>
<td>Fiat Auto</td>
<td>ab 01.07.2000 ISO/TS 16949:1999</td>
</tr>
<tr>
<td></td>
<td>neue Zertifizierungen oder Rezertifizierungen nach ISO/TS 16949:2002</td>
</tr>
<tr>
<td>MAN AG</td>
<td>Lieferanten müssen einen QM-Standard nachweisen.</td>
</tr>
<tr>
<td>Porsche AG</td>
<td>Lieferanten müssen nach VDA 6.1 ausgerichtet sein.</td>
</tr>
</tbody>
</table>
Resultierend aus dem Befragungsergebnis (siehe Tabelle 4) wird in den folgenden Kapitelabschnitten speziell auf die QS 9000, die VDA 6.1 und die ISO/TS 16949:2002 eingegangen, wobei Bild 30 eine Zeitschiene zeigt wie sich die Normen entwickelt haben. Weiterführende automobilherstellerspezifische Forderungen, wie z.B.

- BMW – SPQM (Supplier Parts Quality Management),
- DaimlerChrysler-Mercedes Benz – Special Terms 2002,
- Ford – customer specific requirements of the QS-9000, Sec. II, QOS (Quality Operating System), Q101 2002,
- GM/Fiat – Global Statement of requirements, SQAM (Supplier Quality Assurance Manual), Engineering Standard Europe,
- Porsche – Quality Guideline for Suppliers,
- Renault/Nissan – ANPQP (Alliance new Product Quality Procedure) und
- VW/Audi/Skoda/SEAT - Formel Q-Konkret, QPN (Qualifizierungsprogramm Neuteile), Formel Q-Fähigkeit, Formel Q-Serienreife (2-Tages-Produktion)

werden in dieser Arbeit nicht betrachtet.

Bild 30: Geschichtliche Entwicklung automobilspezifischer Normen

3.4.1 QS 9000:1998

3.4.1.1 Aufbau und Anforderungen

Im Jahr 1988 wurde von den „Big Three“ (Chrysler, Ford und General Motors) eine Task Force (SQRTF = Supplier Quality Requirements Task Force) gegründet, die die Aufgabe hatte, einen Abgleich zwischen den unternehmensspezifischen Qualitätsmanagement-
richtlinien durchzuführen, der zur Bewertung der Lieferanten dienen sollte. Im März 1998 wurde die nunmehr dritte Ausgabe der QS-9000 gemeinsam von DaimlerChrysler, Ford und General Motors (GM) herausgegeben. Innerhalb der Schrift wurden einige Änderungen vorgenommen. Die beiden bedeutendsten Änderungen sind:

- Die Forderungen der europäischen automobilsspezifischen Qualitätsrichtlinien wurden berücksichtigt.

Das Ergebnis konnte in Form von folgenden Broschüren vorgelegt werden:

QSA - Quality System Assessment
Das QSA beinhaltet die Anforderungen an das Qualitätsmanagementsystem (QS-9000) und kann für die Einführung der internen Auditierung nach QS-9000 als Trainingsgrundlage für QS-9000-Audituren genutzt werden und dient ebenso dem tieferen Verständnis der QS-9000. Darüber hinaus behandelt das QSA die Qualitätsmanagementsystem-Dokumentation für QS-9000-Lieferanten.

APQP - Advanced Product Quality Planing & Control Plan
Anhand der APQP-Richtlinie können Checklisten und Pläne vorbereitet werden, die dafür sorgen, dass die Qualitätsplanung tatsächlich beim Lieferanten entsprechend den Vorgaben durchgeführt wird.

PPAP - Production Part Approval Process
Mit dem in der Richtlinie beschriebenen Verfahren soll festgestellt werden, ob das Unternehmen die Konstruktionsauflzeichnungen und Spezifikationen richtig verstanden hat. Weiterhin wird sichergestellt, dass das Unternehmen mit seinen Produktionsanlagen in der Lage ist, das Produkt unter tatsächlichen Serienbedingungen herzustellen.

MSA - Measurement Systems Analysis
Die Schrift kann als eine Art Einführung in die Messsystem-Analyse aufgefasst werden. Man sollte sie jedoch nicht als vollständige Abhandlung für die Analyse aller Messsysteme verstehen. Die MSA zielt in erster Linie darauf ab, die Ergebnisse von Messungen reproduzierbar zu machen.

SPC - Statistical Process Control
Die Referenzschrift beinhaltet die Beschreibung verschiedener statistischer Methoden und die Statistische-Prozess-Regelung (SPC) sowie Prozessfähigkeitsanalysen.

FMEA - Potential Failure Mode and Effects Analysis
Die Schrift beinhaltet eine kurze Einführung in die Fehlermöglichkeiten- und Einflussanalyse. Im Anhang der Broschüre finden sich verschiedene Formblätter wie Blockstrukturdiagramme zur Konstruktions-FMEA und Prozessablaufpläne einer Prozess-FMEA.
Die QS-9000 hat das Ziel, die folgenden grundlegenden und gleichartigen Erwartungen von DaimlerChrysler, Ford und GM zusammenzufassen:

- Kundenzufriedenheit erreichen
- Qualitätsforderungen erfüllen
- Streuungen und Verschwendungen reduzieren
- Nutzen für Lieferanten, Hersteller und Endverbraucher erhöhen

Zeitlich befristete Gültigkeit der Norm:

Gemäß der QS-9000 besteht der Dokumentationsaufbau aus 4 Ebenen (siehe Bild 31):

- Die erste Ebene ist das QMH, welches die Qualitätspolitik und die Verantwortung zum Qualitätsmanagement beschreibt.
- Die zweite Ebene beinhaltet die QMVA, die festlegen, wer, was wann auszuführen hat.
- Die dritte Ebene enthält die QMA, die festlegen sollen, wie die Tätigkeiten im Detail durchzuführen sind.
- Die anderen Dokumente, die für den Nachweis der Einführung und der Wirksamkeit des QMS von Bedeutung sind, enthält die vierte Ebene.

Bild 31: Aufbau der Dokumentation nach QS-9000
3.4.2 VDA 6.1

3.4.2.1 Aufbau und Anforderungen

Im Jahre 1991 veröffentlichte der VDA (Verband der Automobilindustrie) den VDA Band 6 „Qualitätssicherungs-Systemaudit – Fragenkatalog/Bewertung der Ergebnisse“. Bereits damals gliederte sich der Fragenkatalog in die beiden Teile:

- „P“ - für Produkt und Prozess
- „U“ - für Unternehmensführung

Mit dem Band 6 sollte bezweckt werden, die Audits innerhalb der Mitgliedsunternehmen zu vereinheitlichen, um den Prozess des Auditierens für den Auditor und den Auditierten zu erleichtern.

Der Fragenkatalog dient der Bewertung eines QMS und des zugehörigen Bewertungssystems. Die Anwendung ist in erster Linie in Unternehmen vorgesehen, die materielle Produkte herstellen. Der Inhalt des Fragenkataloges geht deutlich über die Forderungen der DIN EN ISO 9001:1994 hinaus. Besonders zu erwähnen sind die Elemente:

- Verantwortung der Leitung
- interne Qualitätsaudits
Die Vorteile der VDA-Bände sind demnach:

- eine strukturierte Vorgehensweise bei der Planung, Einführung, Fertigung und Lieferung von Produkten und Dienstleistungen sowie Produktionsmitteln für die Automobilindustrie und andere Industriezweige
- Vertrauensbildung beim Kunden
- Einsparpotentiale und Kostenvorteile erkennen
- ein reduzierter Aufwand bei der Auditierung

Bild 32: Struktur der VDA-Bände der Reihe 6
Der schon mehrfach erwähnte Fragenkatalog hat folgende Struktur (siehe Bild 34 und Bild 35). Es werden zu insgesamt 23 Elementen verschiedene Fragen gestellt, jede Frage wird dabei durch Definitionen und Beispiele von Forderungen erläutert. Die 23 Elemente werden aufgeteilt in:

- 7 Elemente (siehe Bild 34) für den Bereich der Unternehmensführung ("U")
- 16 Elemente (siehe Bild 35) für den Bereich Produkt und Prozess ("P")

Und geben Auskunft über die einzelnen Elemente des Fragenkataloges.
Bild 35: Inhalt des Fragenkataloges zur VDA 6.1 – Produkt & Prozess

3.4.3 ISO/TS 16949:2002

3.4.3.1 Aufbau und Anforderungen

In den letzten Jahren führten die amerikanische und europäische Automobilindustrie eigene Branchenstandards für Qualitätsmanagementsysteme bei Zulieferern ein. Ein teurer Weg, da aufgrund der spezifischen Kundenforderungen regelwerksspezifische Mehrfachzertifizierungen nicht auszuschließen waren.

Unternehmen, die sowohl für die deutsche, als auch für die amerikanische Automobilindustrie („Big Three“ - DaimlerChrysler, Ford und General Motors) als Lieferanten tätig waren bzw. sind, mussten sich z.B. nach QS-9000 und VDA 6.1 zertifizieren und auditieren lassen.

Ende 1997 wurde die IATF (International Automotive Task Force), bestehend aus dem:

- AIAG (USA: Automotive Industry Action Group),
- ANFIA (Italien: Associazione Nazionale Fra Industrie Automobilistiche),
- CCFA/FIEV (F: Comité des Constructeurs Français d'Automobiles, Fédération des Industries des Equipements pour Véhicules),
- SMMT Ltd. (UK: Society of Motor Manufacturers and Traders Ltd.) und
- VDA/QMC (D: Verband der Automobilindustrie, Qualitäts Management Center)

gegründet, um einen weltweit anerkannten Standard für QMS der Automobilindustrie zu entwickeln.

Bild 36: Geschichte wichtiger QMS in der Automobilindustrie

An ihrer Erstellung waren folgende Verbände und Automobilhersteller beteiligt:

- ANFIA (Italien)
- CCFA/FIEV (Frankreich)
- VDA/QMC (Deutschland)
- DaimlerChrysler AG (Deutschland, USA)
- Ford Motor (USA)
- General Motors (USA)

- Automobilherstellern - (BMW, DaimlerChrysler, Fiat, Ford, General Motors inkl. Opel/Vauxhall, PSA Peugeot-Citroën, Renault SA, Volkswagen)
- andere Parteien - (AIAG (USA), ANFIA (Italien), FIEV (Frankreich), SMMT (UK), VDA/QMC (Deutschland), Japan Automobile Manufacturers Association Inc (JAMA), Vertretern des ISO TC 176 „Quality management an qualityassurance“ als Unterstützung
Ziel der Überarbeitung (siehe Bild 37) war in erster Linie die Anpassung an die prozess-orientierte DIN EN ISO 9001:2000. [68]

Die einzelnen Abschnitte der DIN EN ISO 9001:2000 wurden um die zusätzlichen Automobilanforderungen erweitert und letztere um weitere Unterpunkte ergänzt. [69]

In der DIN EN ISO 9001: 2000 heißt es in Abschnitt 6.2.2 d:
„Die Organisation muss sicherstellen, dass ihr Personal sich der Bedeutung und Wichtigkeit seiner Tätigkeit bewusst ist und weiß, wie es zur Erreichung der Qualitätsziele beiträgt."

Die ISO/TS 16949: 2002 erweitert diese Forderung durch den Abschnitt 6.2.2.4 dahingehend, dass sie fordert:
„Die Organisation muss einen Prozess haben, um das Ausmaß zu messen, inwieweit sich das Personal der Bedeutung und Wichtigkeit seiner Tätigkeit bewusst ist und ob es weiß, wie es zur Erreichung der Qualitätsziele beiträgt."

Ein mögliches Instrumentarium stellt das Ideenmanagement in Form eines innovativen betrieblichen Vorschlagswesens (BVW) dar, daher wird in einem späteren Kapitel noch gesondert darauf eingegangen und ein neuartiger in der Praxis erprobter Lösungsansatz vorgestellt. Ziel dieses verbesserten BVW-Modells ist die Überwindung von Hemmnisbarrieren, welche in der Vergangenheit oftmals nicht überwunden werden konnten.

Aufgrund der Erweiterung des Geltungsbereiches der Norm (siehe Bild 39) ist es nun möglich, die ISO/TS 16949:2002 in der gesamten Lieferkette der Automobilindustrie anzuwenden. [70]

Bild 39: Geltungsbereich der ISO/TS 16949:2002

Der **IATF Leitfaden** zur ISO/TS 16949:2002: [71], [72]

- gibt Hilfestellung bei der Anwendung, um die Anforderungen der Spezifikation besser zu erfüllen
- enthält empfohlene Praktiken, Beispiele und Erläuterungen der Automobilindustrie
- dient nicht der Zertifizierung oder vertraglichen Zwecken

Der **QM-Systemaudit-Fragenkatalog** ist ein Guide bei der Auditierung und gibt Hinweise, die nicht verbindlich, aber jedoch ein guter Leitfaden sind.

Die **Zertifizierungsvorgaben** bestehen aus:

- Anforderungskatalog ISO/TS 16949:2002
- Auditfragenkatalog zur ISO/TS 16949:2002
- Zertifizierungsregeln zur ISO/TS 16949:2002

Voraussetzung für die Zertifizierung:

Vor einer Zertifizierung müssen einige Dokumente, die den internen Anforderungen entsprechen (siehe Bild 40), bei der Zertifizierungsstelle eingereicht werden: [73]

- das Qualitätsmanagementhandbuch
- ein Plan der internen Audits, deren Ergebnisse und QM-Bewertung mit den Ergebnissen der letzten 12 Monate
- eine Liste qualifizierter interner ISO/TS 16949-Auditen
- eine Liste der externen Anforderungen (siehe Bild 41) [74]
- den Status der Kundenbeschwerden
- den betrieblichen Leistungstrend der letzten 12 Monate
ben. Voraussetzung dafür ist, dass seit der Ausstellung des Zertifikats noch keine 3 Jahre vergangen sind (zum Wiederholungsaudit \(^3\)) und sich der Geltungsbereich nicht verändert hat.

Bei der Erstellung des Zertifikats gibt es einige Unterschiede, die im Folgenden kurz erläutert werden.

Fazit:
Da die zusätzlichen Forderungen und Regelwerke der ANFIA (Italien), des EAQF (Frankreich), des VDA (Deutschland) und der QS-9000 (USA) weiterhin als mitgeltende Regelwerke zur ISO/TS 16949:2002 erhalten bleiben, kann die ISO/TS 16949:2002 die Standards der Automobilindustrie nicht vollständig ersetzen.

Wichtig ist auch das Einbeziehen entfernter Standorte. Alle Standorte, die in irgendeiner Weise (Entwicklung, Logistik, Einkauf oder Vertrieb) den zu zertifizierenden Produktionsstandort unterstützen, sind mit in die Planung und Durchführung des Audits einzubeziehen.

\(^3\) Das **Wiederholungsaudit**, das drei Jahre nach der Zertifizierung stattfindet, stellt die Überprüfung aller Qualitätsmanagementelemente sicher und führt bei Erfolg zur erneuten Ausstellung eines Zertifikates.
4 Umweltmanagement

Neben den weltweit etablierten Qualitätsmanagementsystemen haben in den letzten Jahren Umweltmanagementsysteme zunehmend an Bedeutung gewonnen. [75] Im Gegensatz zum Qualitätsmanagement, bei dem die Einführung und die Grundlagen nicht gesetzlich geregelt sind, steht beim Umweltmanagement die Erfüllung gesetzlicher Forderungen an oberster Stelle. Des Weiteren soll das Umweltmanagement dazu dienen, den betrieblichen Umweltschutz kontinuierlich zu verbessern. Daher ist es notwendig, die Tätigkeiten, Produkte oder Dienstleistungen zu kennen, die mit der Umwelt in Wechselwirkung treten können. Nahezu alle Unternehmensaktivitäten sind mit mehr oder weniger großen Auswirkungen auf die Umwelt (siehe Bild 42) verbunden. [76] Diese grundlegende Umweltrelevanz jeden unternehmerischen Handelns macht deutlich, dass eine adäquate Handhabung der Umweltbelange eine vollständige Integration des Umweltschutzes im Unternehmen voraussetzt. [77]

Bild 42: Auswirkungen eines produzierenden Betriebes auf die Umwelt

Wie viele andere Begriffe kann auch der Begriff Umwelt weiter oder enger ausgelegt werden. Eine Möglichkeit besteht darin, Umwelt als „das Ökosystem Erde als räumlich abgegrenzte Lebensgemeinschaft von in funktionaler Abhängigkeit stehenden Menschen, Tieren und Pflanzen und deren Lebensräume“ zu verstehen. [78], [79] Somit umfasst Umweltschutz die Gesamtheit aller Maßnahmen, die der Pflege und dem Erhalt der natürlichen Grundlage für Menschen, Tiere und Pflanzen dienen, dies bezieht sich nicht nur auf den Erhalt bestehender biologischer Gleichgewichte, sondern auch auf die Schaffung neuer Bereiche als Ersatz von bereits zerstörten. [80], [81]
Umweltmanagement

Zum **Umweltmanagement** (UM) gehört neben der Planung, Steuerung, Überwachung und Verbesserung aller Maßnahmen des betrieblichen Umweltschutzes auch eine umweltorientierte Betriebs- und Mitarbeiterführung. Unternehmen der Chemieindustrie sind wohl als erste auf dem Gebiet des Umweltmanagements aktiv gewesen, sicher bedingt durch ihre potentiell umweltrelevanten Produkte und Herstellungsverfahren. [82], [83] Ähnlich wie beim modernen QM geht es nicht nur um den technischen Aspekt (technischer Umweltschutz), sondern es gilt alle Mitarbeiter für die Umweltbelange im Unternehmen zu aktivieren und insbesondere im Management des Unternehmens Verantwortung für Umweltschutzziele zu verankern. [84]

Dass in Deutschland der Umweltschutz eine große Rolle spielt, wird unter anderem an der Vielzahl von Gesetzen zum Schutz der Umwelt deutlich. Allein für die Regelung des betrieblichen Umweltschutzes gibt es in Deutschland eine Vielzahl von Bundesgesetzen und Verordnungen. Zu diesen gehören auszugsweise:

- Bundes-Immissionsschutzgesetz (BImSchG)
- Kreislaufwirtschafts- und Abfallgesetz (KrW-/AbfG)
- Wasserhaushaltsgesetz (WHG)
- Bundes-Bodenschutzgesetz (BBodSchG)
- Umwelthaftungsgesetz (UmweltHG)

Mit dem Umweltrecht werden, im Zuge der Umsetzung des Umweltprogramms der Bundesregierung aus dem Jahr 1971, folgende Hauptziele verfolgt: [88]

- dem Menschen eine Umwelt zu sichern, die es ihm ermöglicht, ein gesundes Leben und ein menschenwürdiges Dasein zu führen
- die Umweltgüter sowie die Pflanzen- und Tierwelt vor nachhaltigen Eingriffen durch den Menschen zu schützen
Im Umweltrecht finden sich insbesondere zwei Arten von Rechtsnormen mit unterschiedlicher Zielrichtung:

- **schutzbezogene** Normen, z.B. Naturschutz- oder Wasserhaushaltsgesetz, welche sich auf den Umweltzustand von Schutzgütern beziehen
- **gefährdungsbezogene** Normen, z.B. Chemikalien- oder Bundes-Immissionsschutzgesetz, welche sich gegen verschiedene Faktoren der Umweltbeeinträchtigung richten

Seit dem 27.10.1994 ist der Umweltschutz in Artikel 20 a des Grundgesetzes verankert.

In Bild 43 werden einige Vorteile genannt, die sich aus der Einführung eines UMS ergeben können.

Bild 43: Nutzen durch das Umweltmanagement

Das UMS bietet kleinen und mittleren Unternehmen die Chance, ihren zukünftigen Unternehmenserfolg positiv zu beeinflussen. Intern wie extern existieren eine ganze Reihe ökologischer Nutzenpotentiale, die aufgedeckt und in verbesserte betriebswirtschaftliche Abläufe umgesetzt werden können.

4.1 Geschichtliche Entwicklung

Der Ursprung der Umwelt(schutz)managementsysteme geht bis in die 60er Jahre zurück, in denen „Technische Anleitungen“ zur Reinhaltung der Luft und zum Schutz gegen Lärm in Kraft gesetzt wurden. In diesen Jahren wurden noch keine UMS gefordert,
im speziellen Fall hatte der Betroffene lediglich nachzuweisen, dass er die in den Technischen Anleitungen festgelegten Grenzwerte bei Immissionen nicht überschritt. [89]

Seit Anfang der 90er Jahre entstanden zwei zertifizierungsfähige Standards, zum einen die Standards der europäischen Union, EMAS bzw. EMAS II, zum anderen die DIN EN ISO 14000er Reihe auf internationaler Ebene. Die Tabelle 5 zeigt den Stand der zertifizierten UMS per 09/2003 weltweit. [91], [92]

Tabelle 5: Statistik der weltweit zertifizierten UMS (Stand per 09/2003)

<table>
<thead>
<tr>
<th>DIN EN ISO 14001:1996</th>
<th>EMAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Japan (10.952)</td>
<td>1. Deutschland (2.486)</td>
</tr>
<tr>
<td>2. Deutschland (3.700)</td>
<td>2. Österreich (331)</td>
</tr>
<tr>
<td>3. Spanien (3.228)</td>
<td>3. Spanien (263)</td>
</tr>
<tr>
<td>4. Großbritannien (2.917)</td>
<td>4. Schweden (201)</td>
</tr>
<tr>
<td>5. Schweden (2.730)</td>
<td>5. Dänemark (130)</td>
</tr>
<tr>
<td>6. USA (2.400)</td>
<td>6. Italien (123)</td>
</tr>
<tr>
<td>7. Italien (1.894)</td>
<td>7. Großbritannien (76)</td>
</tr>
<tr>
<td>8. Frankreich (1.666)</td>
<td>8. Norwegen (56)</td>
</tr>
<tr>
<td>9. Australien (1.485)</td>
<td>9. Finnland (41)</td>
</tr>
<tr>
<td>10. China* (1.024)</td>
<td>10. Niederlande (27)</td>
</tr>
<tr>
<td>11. Korea (1.183)</td>
<td>11. Frankreich (24)</td>
</tr>
<tr>
<td>14. Taiwan (1.024)</td>
<td>14. Tschechien (9)</td>
</tr>
<tr>
<td>15. Kanada (970)</td>
<td>15. Irland (9)</td>
</tr>
</tbody>
</table>

*ohne Hongkong, Macau
**ohne Grönland
4.2 Normungen für Umweltmanagementsysteme

4.2.1 DIN EN ISO 14001:1996

4.2.1.1 Aufbau und Anforderungen

- DIN EN ISO 14001: Umweltmanagementsysteme-Spezifikationen und Leitlinien zur Anwendung
- DIN EN ISO 14004: Umweltmanagementsysteme
- DIN EN ISO 14010: Allgemeine Grundsätze für die Durchführung von Umweltaudits
- DIN EN ISO 14011-1: Auditverfahren, Teil 1: Audit von Umweltmanagementsystemen
- DIN EN ISO 14012: Qualifikationskriterien für Umweltauditoren

Allen Unternehmen, die aktives Umweltmanagement zu einem Grundpfeiler ihrer Unternehmensphilosophie erklärt haben und ihre Umweltaktivitäten weltweit dokumentieren wollen, bringt die DIN EN ISO 14001:1996 folgende Vorteile:

- Systematisierung aller umweltrelevanten Tätigkeiten führt zur Reduzierung von Umweltrisiken
- Verbesserung der Umweltleistung des Unternehmens, einschließlich der Umweltqualität der Produkte (Waren und Dienstleistungen)
- Stärkung des Vertrauens von Öffentlichkeit, Behörden, Kunden, Banken und Versicherungen in die Umweltleistung des Unternehmens
- Kostenersparnis durch systematisches und vorsorgendes Denken und Handeln
- stärkere Identifikation, Motivation und Bindung der Mitarbeiter
- Stärkung des Images und der Wettbewerbsfähigkeit - national und international - durch nachgewiesene verbesserte Umweltleistungen

Die Tabelle 6 zeigt die Gliederungspunkte der Norm. [94]

<table>
<thead>
<tr>
<th>Gliederungspunkt</th>
<th>Titel</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Einleitung</td>
<td>Zweck der Einführung von Umweltmanagementsystemen, Verweis auf gemeinsame Grundsätze mit DIN EN ISO 9000ff</td>
</tr>
<tr>
<td>1</td>
<td>Anwendungs- bereich</td>
<td>Geltung für umweltspezifische Aspekte, die eine Organisation beeinflussen und kontrollieren kann. Anwendung auf Organisationen, die Umweltmanagementsysteme einführen, aufrechterhalten, verbessern und zertifizieren lassen wollen</td>
</tr>
<tr>
<td>2</td>
<td>Verweisungen</td>
<td>z.Z. keine normativen Verweisungen vorhanden</td>
</tr>
<tr>
<td>3</td>
<td>Definitionen</td>
<td>Definition von kontinuierlicher Verbesserung, Umwelt, Umweltaspekt, Umweltauswirkung, Umweltmanagementsystem, Umweltmanagementsystem-Audit, umweltbezogene Zielsetzung, umweltorientierte Leistung, Umweltpolitik, umweltbezogenes Einzelziel, interessierter Kreis, Organisation und Verhütung von Umweltbelastungen</td>
</tr>
<tr>
<td>4</td>
<td>Forderungen an ein Umweltmanagementsystem</td>
<td>Allgemeine Forderungen, Umweltpolitik, Planung (Umweltaspekt, gesetzliche und andere Forderungen, Zielsetzungen und Einzelziele, Umweltmanagementprogramme), Implementierung und Durchführung (Organisationsstruktur und Verantwortlichkeit; Schulung, Bewusstsein und Kompetenz; Kommunikation; Dokumentation des Umweltmanagementsystems; Lenkung der Dokumente; Ablauflenkung, Notfallvorsorge und -maßnahmen), Kontroll- und Korrekturmaßnahmen (Überwachung und Messung; Abweichungen, Korrektur- und Vorsorgemaßnahmen; Aufzeichnungen; Umweltmanagementsystem-Audit), Bewertung durch die obere Leitung</td>
</tr>
<tr>
<td>Anhang</td>
<td>Anleitung zur Anwendung der Spezifikation, Zusammenhänge zwischen ISO 14001 und ISO 9001</td>
<td>Informativer Anhang zur Erklärung der Kernelemente der in Punkt 4 beschriebenen Umweltmanagementsysteme</td>
</tr>
</tbody>
</table>

Im Folgenden werden einige ausgewählte Begriffe der Tabelle 6 zur eindeutigen begrifflichen Abgrenzung definiert. [95]
Umweltmanagement

Umwelt:
Umgebung, in der eine Organisation tätig ist; dazu gehören Luft, Wasser, Land, natürliche Ressourcen, Flora, Fauna, der Mensch sowie deren Wechselwirkungen.

Umweltaspekt:
Derjenige Bestandteil der Tätigkeiten, Produkte oder Dienstleistungen einer Organisation, der in Wechselwirkung mit der Umwelt treten kann.

Umweltmanagementsystem:
Der Teil des übergreifenden Managementsystems, der die Organisationsstruktur, Planungstätigkeiten, Verantwortlichkeiten, Methoden, Verfahren, Prozesse und Ressourcen zur Entwicklung, Implementierung, Erfüllung, Bewertung und Aufrechterhaltung der Umweltpolitik umfasst.

Umweltmanagementsystem-Audit:
Ein systematischer und dokumentierter Verifizierungsprozess zur objektiven Ermittlung und Bewertung von Nachweisen, um festzustellen, ob das Umweltmanagementsystem einer Organisation die selbst festgelegten Auditkriterien erfüllt, sowie die Übermittlung der Ergebnisse dieses Prozesses an die Leitung der Organisation.

Umweltbezogene Zielsetzung:
Aus der Umweltpolitik der Organisation abgeleitetes umweltbezogenes Gesamtziel, das eine Organisation sich selbst setzt und soweit wie möglich quantifiziert.

Umweltorientierte Leistung:
Messbare Ergebnisse des Umweltmanagementsystems einer Organisation in Bezug auf die Beherrschung ihrer Umweltaspekte, welche auf der Umweltpolitik und den umweltbezogenen Zielsetzungen und Einzelzielen beruhen.

Umweltpolitik:
Erklärung der Organisation über ihre Absichten und Grundsätze in Bezug auf ihre umweltorientierte Gesamtleistung, welche einen Rahmen für Handlungen und die Festlegung der umweltbezogenen Zielsetzungen und Einzelziele bildet. [96]

Umweltbezogenes Einzelziel:
Detaillierte, möglichst quantifizierte Vorgabe für die Organisation oder deren Teilbereiche, die sich aus den umweltbezogenen Zielsetzungen ergibt und die für die Realisierung dieser Zielsetzungen festgelegt und erfüllt werden muss.

Interessierter Kreis:
Einzelperson oder Gruppe, welche sich von der umweltorientierten Leistung einer Organisation betroffen fühlt oder davon beeinträchtigt wird.

Organisation:
Gesellschaft, Körperschaft, Betrieb, Unternehmen, Behörde, Institution oder Kombination davon, eingetragen oder nicht, öffentlich oder privat, mit eigenen Funktionen und eigener Verwaltung.
4.2.2 Umsetzung eines Umweltmanagements nach DIN EN ISO 14001:1996

Bild 44 zeigt das grobe 5-Phasen-Schema des Aufbaus und der Umsetzung eines Umweltmanagementsystems nach DIN EN ISO 14001:1996. [97]

Phase 1: Umweltpolitik [98], [99], [100], [101]
Die dokumentierte und implementierte Umweltpolitik muss sicherstellen, dass sie:
- den Tätigkeiten, den Produkten und Dienstleistungen des Standortes sowie deren Umweltauswirkungen entsprechend definiert ist
- eine Verpflichtung zur Einhaltung der rechtlichen Vorgaben enthält
- eine Verpflichtung zur stetigen Verbesserung des betrieblichen Umweltschutzes und die Vermeidung von Umweltverschmutzungen beinhaltet
- den Mitarbeitern und der Öffentlichkeit zugänglich ist

Phase 2: Planung [102], [103], [104]
Diese Phase unterteilt sich in die folgenden vier Einzelschritte:

- Umweltaspekte:

- Gesetzliche und andere Forderungen:
Unter diesem Teilschritt wird die Einführung und Aufrechterhaltung eines Verfahrens durch die Organisation gefordert, welches gewährleistet, dass alle standort-, produkt- und dienstleistungsspezifischen rechtlichen Vorgaben ermittelt werden, zu deren Einhaltung die Organisation verpflichtet ist.
Zielsetzungen und Einzelziele
Die Organisation muss unter Berücksichtigung der rechtlichen Vorgaben, der festgelegten Umweltpolitik und den finanziellen Rahmenbedingungen für alle hierarchischen Ebenen umweltspezifische Zielsetzungen und Einzelziele festlegen.

Umweltmanagementprogramme
Als letzter Planungspunkt ist die Erstellung von Umweltprogrammen zur Erreichung der umweltspezifischen Zielsetzungen und Einzelziele mit der Festschreibung der Verantwortlichkeiten und des zeitlichen Rahmens zu nennen.

Phase 3: Implementierung und Durchführung
Nach den beiden vorbereitenden Phasen erfolgt in der dritten Phase die eigentliche Umsetzung und Durchführung des UMS. Dazu werden die folgenden Teilschritte behandelt:

Organisationsstruktur und Verantwortlichkeit
Um eine den Anforderungen der Norm entsprechende Einführung und Aufrechterhaltung des UMS sicherzustellen, hat die Unternehmensleitung die entsprechenden Aufgaben, Verantwortlichkeiten und Befugnisse der einzelnen Mitarbeiter festzuschreiben. Im Rahmen dieser umweltbezogenen Aufgabendelegation ist mindestens ein Beauftragter der obersten Leitung zu benennen.

Schulung, Bewusstsein und Kompetenz

Kommunikation

Dokumentation des Umweltmanagementsystems
Ein weiterer Teilabschnitt ist die Erstellung einer Dokumentation durch die Organisation, um die wesentlichen Elemente des UMS und ihre Wechselwirkungen zu beschreiben und Hinweise für das Auffinden der zugehörigen Dokumentation zu geben.

Lenkung der Dokumente
Die ordnungsgemäß Lenkung aller nach dieser Norm erforderlichen Dokumente, deren Zuordnung, Aktualisierung, Überprüfung und Aufbewahrung muss seitens der Organisationsleitung mit Hilfe eines geeigneten Verfahrens gewährleistet werden.

Ablauflenkung
Das Unternehmen hat für umweltrelevante Tätigkeiten eindeutige Arbeits- und Verfahrensanweisungen festzulegen und zu dokumentieren. Diese haben mit den umweltpoli-
tischen Zielsetzungen übereinzustimmen. Dabei sind die eingesetzten Güter und Dienst-
leistungen von Vorlieferanten in der Form einzubeziehen, dass den jeweiligen Zuliefe-
rern die entsprechenden umweltbezogenen Anforderungen und Verfahrensanweisungen
bekannt gegeben werden. [105]

- **Notfallvorsorge und -maßnahmen**
Hierzu sieht die Norm vor, dass die Organisation Verfahren einrichten, aufrechterhalten
und regelmäßig erproben muss, um mögliche Unfälle und Notfallsituationen zu ermitteln
und auf diese entsprechend zu reagieren sowie Umwelteinwirkungen, die damit verbun-
den sein könnten, zu verhindern und zu begrenzen.

Phase 4: Kontroll- und Korrekturmaßnahmen
Die vierte Phase wird nach der internationalen Norm in vier Einzelschritte unterteilt:

- **Überwachung und Messung**
Die Organisation muss dokumentierte Verfahren zur kontinuierlichen Überwachung und
Messung jener Arbeitsabläufe und Tätigkeiten einführen, welche eine „bedeutende
Auswirkung“ auf die Umwelt haben können. Die umweltbezogenen Zielsetzungen des
Unternehmens sind als Leistungskriterien heranzuziehen.

- **Abweichungen, Korrektur- und Vorsorgemaßnahmen**
Für die Behandlung und Untersuchung von Abweichungen sowie zur Entscheidungsfin-
dung bei Vorkommnissen und zur Einleitung von Korrektur- und Vorsorgemaßnahmen
sind die Verantwortlichkeiten und Befugnisse festzulegen. Aufgrund von Korrektur- und
Vorsorgemaßnahmen sind die entsprechenden Anweisungen zu aktualisieren.

- **Aufzeichnungen**
Das Verfahren zur Lenkung von umweltrelevanten Aufzeichnungen, inklusive der Schu-
lungsnachweise und der Ergebnisse aus Umweltbetriebsprüfungen, ist zu regeln.

- **Umweltmanagementsystem-Audit**
Es sind regelmäßige Umweltbetriebsprüfungen zu planen und von Mitarbeitern der Or-
ganisation und/oder externen Zertifizierern (bei der TGA akkreditierten) durchzuführen.

Phase 5: Bewertung durch die oberste Leitung
Die Eignung und Wirksamkeit des Umweltmanagementsystems ist in festgelegten Interv-
allen von der obersten Leitung zu bewerten. Aufgrund der Bewertung ist die Notwen-
digkeit einer Anpassung der Umweltpolitik, der Zielsetzungen und Einzelziele zu prüfen.
Gegebenenfalls sind weitere Maßnahmen zur stetigen Verbesserung des betrieblichen
Umweltschutzes einzuleiten.

4.2.3 Ablauf einer Zertifizierung
Das UM-System kann eigenständig oder auch in Kombination mit anderen Manage-
mentsystemen, z.B. nach DIN EN ISO 9001 als kombinierte Zertifizierung erfolgen. Der
Ablauf einer Zertifizierung wird in Bild 45 beschrieben.
Die Zertifizierungsleistung ist abhängig von dem Umfang der Zertifizierung. Hier spielen verschiedene Einflussfaktoren eine entscheidende Rolle, wie z.B.:

- Branchen
- Vielfalt der Produkte
- Vielfalt der Verfahren und Automatisierungsgrad
- Unternehmensgröße und Mitarbeiterzahl
- Organisationsstruktur und Standortverteilung
- Forderungen aus gesetzlichen Regelungen
- Vorhandensein eines QMS nach DIN EN ISO 9001:2000
4.2.4 EMAS - Eco-Management and Audit Scheme

4.2.4.1 Aufbau und Anforderungen

An EMAS können sich Organisationen beteiligen, die ihren betrieblichen Umweltschutz verbessern möchten. Organisation ist dabei umfassend zu verstehen als Unternehmen, Handwerks- oder Gewerbebetrieb, aber auch als Einrichtung der öffentlichen Hand.
Zur EMAS-Teilnahme müssen Organisationen ihre Tätigkeiten, Produkte und Dienstleistungen in Hinblick auf Auswirkungen auf die Umwelt überprüfen und auf dieser Grundlage ein Umweltmanagement schaffen.

Die EMAS II-Verordnung bringt einige Verbesserungen gegenüber EMAS I:

- Der Anwendungsbereich ist vergrößert worden; Dienstleister (wie Banken, Versicherungen, Reiseveranstalter, Handelshäuser), aber auch die Bau- und Landesbehörden sind jetzt teilnahmeberechtigt.
- In Artikel 3 Absatz 3 Buchstabe c der EMAS II-Verordnung ist vorgesehen, dass Organisationen zur Aufrechterhaltung der EMAS-Eintragung u.a. die für gültig erklärten Neufassungen der Umwelterklärung der zuständigen Stelle künftig jährlich übermitteln und öffentlich zugänglich machen müssen. Gemäß des o.g. Artikels der EMAS II-Ver-
Umweltmanagement

ordnung kann von jährlichen Neufassungen in den Fällen abgewichen werden, die in
den nach dem Verfahren des Artikels 14 Absatz 2 verabschiedeten Leitlinien der
Kommission festgelegt sind, insbesondere bei kleinen Organisationen und Unterneh-
men im Sinne der Empfehlung 96/280/EG der Kommission (Abl. L 107 vom
30.04.1996, S. 4) und wenn es keine Änderungen am Umweltmanagementsystem

gibt.

Die Beschränkung der Zertifizierung bei einer in mehreren Niederlassungen wirtschaf-
tenden Organisation auf den Standort entfällt, auch Erzeugergemeinschaften z.B. in
der Landwirtschaft können als Organisation auftreten.

In Hinblick auf die Registrierung ergeben sich ebenfalls Änderungen mit Einführung der
EMAS II-Verordnung:

Das Format der Registriernummern wird EU-weit vereinheitlicht, wobei soweit wie
möglich auf die Beibehaltung der laufenden Registriernummer geachtet wird. Für bis-
er im Standortverzeichnis gemäß EMAS-Verordnung Nr. 1836/93 eingetragene
Standorte bedeutet dies, dass der Buchstabe „S“ (für site bzw. Standort) wegfällt, da
sich nunmehr Organisationen im Sinne des Artikels 2 Buchstabe s der EMAS II-Ver-
ordnung an EMAS beteiligen können. Des Weiteren erfolgt eine Verkürzung der sie-
ben- auf eine sechsstellige Nummer. Die bisher als 'experimental sites' (Registrier-
nummern A-EXP-00XX) erfassten Standorte werden mit Inkrafttreten der EMAS II-
Verordnung den bisher im Standortverzeichnis gemäß EMAS-Verordnung Nr.
1836/93 registrierten Standorten angeschlossen und erhalten dadurch eine neue Re-
gistriernummer zugeteilt.

Als Hilfestellung bei der Einführung von EMAS II sind sieben Leitlinien erschienen, wo-
von drei verbindlich sind: [106], [107]

- EMAS-Leitlinie Verifizierung, Validierung und Audithäufigkeit
- Leitlinie über die Verwendung des EMAS-Logos
- Leitlinie über geeignete Organisationsstrukturen für EMAS-Registrierung

Die anderen vier besitzen Empfehlungscharakter:

- EMAS-Leitlinie über die Umwelterklärung
- Leitlinie für die Auswahl und Verwendung von Umweltleistungskennzahlen im Rah-
men der EMAS-Verordnung
- Leitlinie über die Beteiligung der Mitarbeiter an EMAS
- Leitlinie über das Vorgehen zur Identifizierung und Bewertung von Umweltaspekten
4.2.5 Ablauf einer Zertifizierung

Der Ablauf von EMAS ist in der Verordnung im Artikel 3 Abs. 2 beschrieben und wird in Bild 47 dargestellt. [108], [109]

Die **Umweltprüfung** ist die erste umfassende Untersuchung des Unternehmens. Es werden sämtliche Umweltaspekte (siehe Bild 48) erfasst, die dann die Grundlage für das aufzubauende **Umweltmanagementsystem** bilden. [110]

Bild 48: Standort und Betriebsbilanz

Folgende Punkte sollen in der Umweltprüfung untersucht und bewertet werden:

- Einhaltung aller Rechts- und Verwaltungsvorschriften
- Tätigkeiten im Unternehmen, die wesentliche Umweltauswirkungen besitzen. Es wird eine Bewertung der Bedeutung einzelner Umweltauswirkungen hinsichtlich Größe und Schädigung vorgenommen, um wesentliche von unwesentlichen Auswirkungen zu trennen. Es erfolgt eine Differenzierung in:
 a) **direkte** Umweltaspekte:
 - Einleitungen in Gewässer
 - Emissionen in die Atmosphäre
 - Abfallvermeidung, -verwertung und -entsorgung
 - Nutzung natürlicher Ressourcen
 - Lärm, Erschütterungen, Gerüche, Staub,...
 b) **indirekte** Umweltaspekte:
 - Verkehrsplanung
 - Planung von Wasser- und Energieversorgung
 - Erteilung von Baugenehmigungen
 - Emissionen durch Ausweisung neuer Gewerbegebiete
 - Erschließung neuer Märkte
- Verfahren, Techniken und Prozesse des Umweltmanagements, insbesondere die Organisationsstruktur und Verantwortlichkeiten

Bild 49: Umweltauswirkungen während des Produktlebenszyklus

Die interne Umweltbetriebsprüfung sollte im Wesentlichen die gleichen Inhalte haben wie die Prüfung durch einen externen Umweltgutachter. Untersucht wird, ob das Managementsystem nach den Vorgaben der EMAS II aufgebaut wurde und auch angewendet wird, es mit der Umweltpolitik übereinstimmt, alle einschlägigen rechtlichen Vorschriften eingehalten werden und ob es zur Bewältigung der Aufgaben geeignet ist.

Die Umwelterklärung ist die Basis für einen offenen Dialog mit ihren Zielgruppen. Sie beschreibt die Organisation, ihre Tätigkeiten, Produkte und Dienstleistungen.
Ziel der Umwelterklärung ist es, Informationen über Umweltauswirkungen, Umweltleistungen und den Fortschritt des kontinuierlichen Verbesserungsprozesses der Öffentlichkeit zugänglich zu machen. Der Inhalt (siehe Bild 50) muss unverfälscht und verständlich sein. Weitere Themenschwerpunkte sind die Umweltpolitik, die Umweltziele und Anforderungen in Hinblick auf die beschriebenen Auswirkungen.

Bild 50: Inhalt der Umwelterklärung

Die Umwelterklärung ist zunächst im Entwurf zu erstellen, da sie der Gutachter noch validieren muss. Aufgabe des zugelassenen Umweltgutachters im Rahmen von EMAS ist die Prüfung, ob alle Anforderungen der Verordnung in Hinblick auf die erste Umwelterklärung erfüllt werden und die Daten sowie Informationen der für gültig zu erklärenden Umwelterklärung zuverlässig, glaubwürdig und richtig sind.

Mit der validierten Umwelterklärung kann das Unternehmen bei der jeweils zuständigen Registrierstelle (Industrie- und Handelskammer oder Handwerkskammer) einen Antrag auf Eintragung in das EMAS-Verzeichnis stellen.

Das EMAS-Logo soll zum Ausdruck bringen:

- Das registrierte Unternehmen ist bestrebt an einer kontinuierlichen Verbesserung der eigenen Umweltleistung über die gesetzlichen Anforderungen hinaus.
- Es besitzt ein funktionierendes Umweltmanagementsystem.
- Die Informationen des Unternehmens sind glaubhaft, da sie von einem Umweltgut-achter validiert wurden.

Der letzte Punkt bildet den größten Vorteil einer EMAS-Registrierung. Mit EMAS werden alle Belange des Umweltschutzes erfüllt. Im Umweltrecht herrscht die sogenannte Beweislastumkehr, was soviel bedeutet, dass ein Unternehmen, welches in Verdacht steht, eine Umweltstraftat begangen zu haben, Beweise für seine Unschuld zu erbringen hat. Wenn beispielsweise in einem groß angelegten Chemiepark Gase austreten und der Staatsanwalt ein Unternehmen anklagt, das nach EMAS registriert ist, liegt die Beweislast beim Ankläger, da EMAS höchste Ansprüche nach europäischem Recht beinhaltet.

In der Tabelle 7 wird gezeigt, wer für die verschiedenen Schritte während der Zertifizierung nach EMAS-Verordnung federführend verantwortlich ist. [112]

Tabelle 7: Zuständigkeiten während der Zertifizierung

<table>
<thead>
<tr>
<th>Maßnahmen</th>
<th>Unternehmen</th>
<th>Externe Berater</th>
<th>Zugelassene Umweltgut-achter</th>
<th>Zuständige Registrierstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festlegung einer Umweltpolitik</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durchführung einer Umweltprüfung</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schaffung eines Umweltpogramms und eines Umweltmanagements</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durchführung der internen Umweltbetriebsprüfung</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festlegung von Zielen zur kontinuierlichen Verbesserung</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erstellung einer Umwelterklärung</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Externe Prüfung von Umweltpolitik, -programm, -managementsystem, Prüfungsverfahren und Umwelterklärung</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validierung der Umwelterklärung</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Übermittlung der validierten Erklärung an die zuständigen Stellen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eintragung des Standortes</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veröffentlichung der validierten Umwelterklärung</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 Vergleich EMAS und DIN EN ISO 14001:1996

Die Tendenz geht eindeutig dahin, dass sich die beiden Systeme einander annähern. Mit der Novelle im Jahre 2001 sind die Anforderungen an das Managementsystem DIN EN ISO 14001:1996 in EMAS II (siehe Bild 51) integriert worden. [113]

Bild 51: Verhältnis von EMAS zur DIN EN ISO 14001:1996

Tabelle 8: Vergleich EMAS und DIN EN ISO 14001:1996

<table>
<thead>
<tr>
<th>Kriterien</th>
<th>EMAS</th>
<th>DIN EN ISO 14001:1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaltliche Gemeinsamkeiten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalte Gemeinsamkeiten</td>
<td>Einhaltung der gesetzlichen Vorschriften und Festlegung auf die kontinuierliche Verbesserung der Umweltauswirkungen der Organisation in der unternehmensspezifischen Umweltpolitik</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Definition von quantifizierbaren Umweltzielen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benennung eines Managementbeauftragten und Aufbau einer Umweltschutzorganisation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interne Audits in Form von Systemaudits (Prozesse, Daten und Umweltleistungen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dokumentation des Managementsystems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kontinuierliche Verringerung der Umweltauswirkungen des Betriebsstandorts unter Einsatz der besten verfügbaren und wirtschaftlich vertretbaren Technik</td>
<td></td>
</tr>
<tr>
<td>Inhaltliche Unterschiede</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geltungsbereich</td>
<td>EU-weit, gesetzlich geregelt; beinhaltet auch Regelungen für das Zulassungsverfahren von Umweltgutachtern</td>
<td>weltweit</td>
</tr>
<tr>
<td></td>
<td>alle Organisationen auch Dienstleister</td>
<td>alle Organisationen auch Dienstleister</td>
</tr>
<tr>
<td></td>
<td>Umweltverträglichkeit der hergestellten Produkte wird nicht geprüft</td>
<td>unternehmensspezifisch</td>
</tr>
<tr>
<td></td>
<td>Umweltverträglichkeit der hergestellten Produkte wird nicht geprüft</td>
<td>Aktivitäten, Produkte und Dienstleistungen sowie ihre ökologischen Auswirkungen werden integriert</td>
</tr>
<tr>
<td>Normungsart/Rechtlicher Status</td>
<td>europäische Verordnung</td>
<td>internationale Norm</td>
</tr>
<tr>
<td></td>
<td>unmittelbar geltendes EU-Recht</td>
<td>privatwirtschaftliche Vereinbarung/Norm</td>
</tr>
<tr>
<td></td>
<td>gesetzlich geregelt in Deutschland</td>
<td>Managementsystem</td>
</tr>
<tr>
<td>Betrachtungsschwerpunkt</td>
<td>Umweltschutzleistungen der Organisation und Information der Öffentlichkeit</td>
<td></td>
</tr>
<tr>
<td>Verifizierung</td>
<td>Validierung mit Logo durch Umweltgutachter (Zulassung durch DAU)</td>
<td>Zertifizierung mit Zertifikat durch akkreditierte Organisationen (Akkreditierung durch TGA)</td>
</tr>
<tr>
<td></td>
<td>Begutachtung mit Teilnahmeerklärung</td>
<td></td>
</tr>
<tr>
<td>Erste Umweltprüfung</td>
<td>erforderlich - als Systembestandteil</td>
<td>empfohlen - als Ist-Aufnahme zur Ermittlung der Umweltauswirkungen</td>
</tr>
</tbody>
</table>

4 DAU – Deutsche Akkreditierungs- und Zulassungsgesellschaft mbH
<table>
<thead>
<tr>
<th>Kriterien</th>
<th>EMAS</th>
<th>DIN EN ISO14001:1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaltliche Unterschiede (Fortsetzung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Werbung</td>
<td>produktbezogene Werbung mit dem EG-Öko-Audit Label ist nicht zulässig</td>
<td>produktbezogene Werbung möglich</td>
</tr>
<tr>
<td>Öffentlichkeit</td>
<td>Pflicht zur Veröffentlichung der Umwelterklärung</td>
<td>Pflicht zur Veröffentlichung der Umweltpolitik; externe Kommunikation, Art und Weise freigestellt</td>
</tr>
<tr>
<td>Umwelterklärung</td>
<td>muss erstellt und für gültig erklärt werden (Update alle 12 Monate)</td>
<td>nicht gefordert</td>
</tr>
</tbody>
</table>
| Überprüfung des Systems/Kontrolle | ▪ umfassende externe Umweltbetriebsprüfung/Audit mindestens alle 3 Jahre gefordert
 ▪ jährliche Überprüfung der aktualisierten Umwelterklärung
 ▪ staatliche Überwachung | ▪ regelmäßige Auditierung vorgeschrieben (jährlich Überwachungsaudit, alle 3 Jahre Wiederholungsaudit)
 ▪ privatwirtschaftliche Organisationen |
| Was wird erfasst? | alle umweltrelevanten Tätigkeiten, Produkte und Dienstleistungen | Umweltaspekte, die kontrollierbar und beeinflussbar erscheinen |
| Kontinuierliche Verbesserung | des betrieblichen Umweltschutzes in Hinblick auf die Reduzierung der Umweltauswirkungen der Organisation | des Umweltmanagements, mit dem Ziel der Reduzierung von Umweltbelastungen |
| Technische Mittel | Anwendung der „besten verfügbaren, wirtschaftlich vertretbaren Technik“ zur Verringerung der Umweltauswirkungen | Berücksichtigung „technologischer Optionen“ |
| Besonders geeignet für Unternehmen, die ... | ▪ überwiegend in der EU tätig sind
 ▪ eine Umwelterklärung veröffentlichen wollen, weil sie z.B. besonders aktiv im Umweltschutz sind
 ▪ für Zulieferer von Großunternehmen, die bereits am System teilgenommen haben
 ▪ häufig öffentliche Aufträge annehmen
 ▪ direkt an Endverbraucher liefern | ▪ weltweit tätig sind (z.B. sehr hoher Exportanteil, viele außereuropäische Kunden und Standorte)
 ▪ zunächst keine Umwelterklärung veröffentlichen wollen
 ▪ nur bestimmte Organisationsbereiche zertifiziert haben möchten
 ▪ für Zulieferer von Großunternehmen, die bereits am System teilgenommen haben |
Fazit:

Dass sich die Einführung eines UMS und dessen Zertifizierung durchaus lohnen kann, zeigen die Ergebnisse der Unternehmensbefragung des Umweltgutachterausschusses (UGA), die in Bild 52 auszugsweise dargestellt werden. Laut dieser Umfrage stand der Wunsch nach Wettbewerbsvorteilen im Vordergrund. [114], [115]

Bild 52: Beweggründe zur Einführung eines UMS

Mit dem neuen Abkommen werden alle Kreditnehmer voraussichtlich ab 2007 "geratet". Je nach Ergebnis dieses Ratings beträgt die vorgeschriebene Eigenkapitalunterlegung dann mehr oder weniger als die in der Vergangenheit üblichen 8% der Kredite. [116] Innerhalb des Ratingverfahrens wird ein Aspekt der umwelt- und sicherheitstechnische Zustand des Unternehmens sein, ein weiterer die Frage der Risikoabsicherung durch Schadensverhütung und Versicherungen. Hier bietet sich an, durch ein eingeführtes und zertifiziertes UMS, organisationstechnische sowie rechtliche Standards systematisch und kontinuierlich sicherzustellen und transparent halten zu können.
4.4 Umweltmanagementsysteme der Automobilindustrie

Auszug Presseerklärung General Motors 21.09.1999:
„…General Motors Corporation today announced plans to implement a new, aggressive environmental certification requirement for its suppliers. By the end of 2002, GM will require its suppliers to certify the implementation of environmental management systems (EMS) in their operations, in conformance with ISO 14001.”

Auszug aus der Presseerklärung Ford 21.09.1999:
„…Specifically, Ford is requiring suppliers to certify at least one manufacturing site to ISO 14001 by the end of 2001 and all manufacturing sites shipping products to Ford by July 1, 2003.”

Mit der Einführung von Umweltmanagementsystemen können Kosteneinsparmöglichkeiten aufgedeckt werden. Für die Automobilhersteller ist jedoch der Imageeffekt auf die Konsumenten (besonders in Westeuropa) ein ebenso wichtiger Faktor wie die Propagierung von Umweltmanagementsystemen bei ihren Lieferanten.

5 Arbeitsschutz-/Sicherheitsmanagement

6 Arbeitsgestaltung ist die Umsetzung arbeitswissenschaftlicher Erkenntnisse und die Nutzung arbeitswissenschaftlicher Methoden bei der menschbezogenen und menschengerechten Planung, Bewertung und Gestaltung betrieblicher Strukturen, Prozesse und Bedingungen im Sinne ganzheitlich-systemischer Lösungen für Arbeitsprozesse.

Allgemeine arbeitswissenschaftliche Gestaltungsziele sind die Ausführbarkeit, Schädigungslosigkeit, Beeinträchtigungsfreiheit, Sozialverträglichkeit, Gesundheits- und Persönlichkeitsförderlichkeit der Arbeit.

7 physische Belastung: Gesamtheit der äußeren Einflüsse, die zu körperlichen und muskulären Reaktionen führen (z.B. Blutdrucksteigerung).

psychische Belastung: Gesamtheit der äußeren Einflüsse, die psychische Reaktionen (z.B. Konzentrationsstörungen) hervorrufen.

psychosoziale Belastung: Untergruppe der psychischen Belastung, die sich auf die zwischenmenschlichen Beziehungen und sozialen Verhaltensmuster bezieht.
Auswirkungen auf Leistungsfähigkeit, Wohlbefinden und Gesundheit mit daraus verursachten erheblichen sozialen und wirtschaftlichen Nachteilen zu vermeiden. Die physischen, psychischen und psychosozialen Faktoren der Arbeit sollten zukünftig stärker in den Arbeits-/Gesundheitsschutz und damit in die Arbeitsgestaltung integriert werden, um im Sinne

- einer präventiven Langzeitstrategie, die darauf gerichtet ist, Arbeitspersonen langfristig (bis Erreichen der gesetzlichen Altersgrenze für die berufliche Arbeit und darüber hinaus) körperlich und psychisch gesund zu erhalten und
- einer leistungsorientierten Gestaltung, die im Arbeitsalltag Leistungsreduktionen durch Fehlbelastungen und akute Fehlbelastungsfolgen vermeidet, sondern im Gegenteil die Erfolgsfaktoren der Arbeit stärkt.

Das Vermeiden psychischer Fehlbelastungen sollte nur ein Minimalziel des Arbeitsschutzes und damit der menschengerechten Belastungsgestaltung der Arbeit sein. Die erweiterte Zielsetzung für die Zukunft ist daher die Belastungs- und Beanspruchungs-optimierung, d.h. Arbeitsanforderungen und Belastungen sowie Arbeitsweisen und Bewältigungsformen der Arbeitspersonen sind so zu gestalten bzw. zu entwickeln, dass daraus positive Entwicklungspotentiale für die Arbeitspersonen resultieren (Gesundheits- und Persönlichkeitsförderlichkeit der Arbeit, ressourcenorientierte Arbeitsgestaltung und Personalentwicklung).

Ein Hemmnis für die konsequente Integration der psychischen und psychosozialen Belastungsfaktoren und Belastungswirkungen in den Gesundheitsschutz und die Gesundheitsprävention/-förderung in Verbindung mit der Arbeitsgestaltung ist vielfach ein Defizit an Wissen zu dieser Problematik. Auf einen möglichen Ansatz der Wissensvermittlung wird in Kapitel 8: Schulung durch e-learning eingegangen. [120]
Innerhalb des Beziehungsgefüges Mensch und Arbeit spielt das Verhältnis Arbeit und Gesundheit (siehe Bild 53) eine entscheidende Rolle.

Bild 53: **Beziehung Gesundheit-Arbeit**

Die sich aus der Beziehung Arbeit-Gesundheit ergebenden Auswirkungspotentiale sind ambivalent. Einerseits können die Arbeitssituationen und das Arbeitsverhalten gesundheitsschädigende Risikofaktoren (z.B. Arbeitsunfälle, chronische Erkrankungen, psychische/psychosomatische Erkrankungen/Störungen, Beeinträchtigung des Wohlbefindens) beinhalten, andererseits gesundheitsfördernde Potentiale (z.B. physischen und psychische Fitness) enthalten, d.h. Faktoren, die als sogenannte Ressourcen zur Gesundheitserhaltung, Gesundheitsförderung oder sogar zur Heilung beitragen.

Die Ansprüche an den modernen Arbeitsschutz sind in Gesetzen und anderen Vorschriften verankert, die gemäß Bild 54 in drei Bereiche gegliedert werden können.

Bild 54: **Aufbau des ASS-Vorschriftensystems**

Die **Psychosomatik** beinhaltet die Zusammenhänge zwischen psychischen und psychosozialen/sozialen Faktoren einerseits und körperlichen Prozessen und Zuständen andererseits in Verbindung mit Gesundheit und Krankheit.
In Ergänzung zu Bild 54 erfolgt in Tabelle 9 eine begriffliche Erläuterung des aufgeführten ASS-Vorschriftensystems. [121]

Tabelle 9: Begriffliche Erläuterung des ASS-Vorschriftensystems

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesetze</td>
<td>Gesetze sind allgemeinverbindliche Rechtsvorschriften, die die Rechte und Pflichten der ihrem Geltungsanspruch unterworfenen Personen durch abstrakte und generelle Gebote und Verbote regeln.</td>
</tr>
<tr>
<td>Unfallverhütungsvorschriften</td>
<td>werden von den Berufsgenossenschaften erarbeitet, gelten für jeden Betriebsangehörigen im Mitgliedsbetrieb.</td>
</tr>
<tr>
<td>Durchführungsanweisungen</td>
<td>gelten für den Technischen Aufsichtsdienst der Berufsgenossenschaft, sind jedoch auch ohne deren Anordnung empfehlenswert.</td>
</tr>
<tr>
<td>allgemeine Verwaltungsvorschriften</td>
<td>besitzen unmittelbare Verbindlichkeit.</td>
</tr>
<tr>
<td>gesicherte arbeitswissenschaftliche Erkenntnisse</td>
<td>schließen „überwiegende“ Meinungen der Fachkreise ein, wie sie u.a. in der Fachliteratur zum Ausdruck kommen.</td>
</tr>
</tbody>
</table>

In Deutschland gibt es 2 Institutionen, die Vorschriften zum Arbeitsschutz erlassen:

- **Staat** (Bund/Länder), die Gesetze und Verordnungen

Das Arbeitsschutzgesetz bedeutet für deutsche Verhältnisse eine einheitliche Grundlage, d.h. Grundpflichten und -rechte zum Arbeitsschutz für die sich im freien Wettbewerb auf dem europäischen Markt befindlichen Organisationen. In Erfüllung der sich aus den §§ 3 bis 14 ergebenen Pflichten des Arbeitsschutzgesetzes leiten sich für den Arbeitgeber Anforderungen ab, die er nur mit einem wirksamen Arbeitsschutz-/Sicherheitsmanagementsystem erfüllen kann.

Im Buch VII des Sozialgesetzbuches und im ArbSchG ist Folgendes festgehalten:

„Der Arbeitgeber ist verpflichtet, die erforderlichen Maßnahmen des Arbeitsschutzes unter Berücksichtigung der Umstände zu treffen, die die Sicherheit und Gesundheit der Beschäftigten bei der Arbeit beeinflussen. Er hat Maßnahmen auf ihre Wirksamkeit zu überprüfen und erforderlichenfalls sich ändernden Gegebenheiten anzupassen. Dabei hat er eine Verbesserung von Sicherheit und Gesundheitsschutz der Beschäftigten anzustreben.“

Begriffliche Definitionen: [122]

- **Sicherheit** wird durch Verminderung oder Eliminierung von Risiken erzielt. Eine absolute Sicherheit ist nicht erreichbar, da immer ein bestimmter Grad an Gefährdung existiert.

- **Risiko** ist eine Bewertungsgröße, die gleichgewichtig durch die Wahrscheinlichkeit eines zum Schaden führenden Ereignisses und das im Ereignisfall zu erwartende Schadensausmaß bestimmt ist.

Damit ist festgelegt, dass die Arbeitgeber (Organisationen) dafür Sorge zu tragen haben, ein funktionierendes und ständig zu verbesserndes (Management-)System des Arbeitsschutzes und der Sicherheit zu unterhalten. Allerdings wird offen gelassen, wie die Ausführung aussehen soll. Festgelegt ist lediglich, was getan und dokumentiert werden muss, um die Gesetze und Vorschriften einzuhalten.

Mit (Arbeits-)Sicherheit ist in diesem Zusammenhang die Gefährdungslosigkeit gemeint, d.h. es wird dafür gesorgt, dass der Arbeitende räumlich und zeitlich nicht mit einer Gefahr zusammentrifft. Heute umfasst der Begriff auch die menschengerechte und ergonomische Gestaltung der Arbeit. Es geht nicht mehr nur darum, zu vermeiden, dass der Mensch körperlichen, funktionseinschränkenden Schaden nimmt. Vielmehr spielt auch die psychische Gesundheit und Prävention eine große Rolle. Nach dem heutigen Verständnis in der Arbeitswissenschaft soll Arbeit die Gesundheit erhalten.

Ein Arbeitsschutzmanagement (ASM) umfasst die Planung, Steuerung, Überwachung und Verbesserung aller Maßnahmen zur menschengerechten und präventiven Gestaltung der Arbeit.

Das Arbeitsschutz-/Sicherheitsmanagementsystem soll das Unternehmen so führen, dass Arbeitssicherheit, der Schutz der Gesundheit der Beschäftigten und der Schutz Dritter vor Anlagen mit erhöhtem Gefährdungspotential als unternehmerische Zielsetzung gleichwertig und im Einklang mit anderen, z.B. auf Ertragsoptimierung, Qualitätssicherung und Umweltschutz gerichteten unternehmerischen Zielsetzungen steht. Diese dargestellten Aspekte machen die gesamte Problematik Sicherheitsmanagement zu einer komplexen Aufgabenstellung, der sich Unternehmen permanent gegenüberstehen (siehe Bild 55).

Bild 55: Komplexität des Sicherheitsmanagements

In vielen Unternehmen wird bereits die Einführung eines Arbeitsschutz-/Sicherheitsmanagementsystems diskutiert. Durch die Einführung soll dabei eine geänderte Sichtweise im Unternehmen erreicht werden. Diese neue Sichtweise führt weg von einer in der Vergangenheit hauptsächlich nachsorgenden Reaktion auf Arbeitssicherheitsprobleme hin zu einem vorsorgend agierenden Verhalten im Rahmen dieses Aufgabenbereiches. Die Entscheidung, eine international gültige Norm zu entwickeln, ist aber bisher noch nicht gefallen.
Arbeitsschutz-/Sicherheitsmanagement

Bild 56: Ausgewählte Arbeitsschutz-/Sicherheitsmanagementsysteme

So unterschiedlich die Konzepte in Herkunft, Ausrichtung oder Art sein mögen, sie haben gemeinsam, dass sie Hinweise geben, wie das Thema Arbeitsschutz-/Sicherheitsmanagement in bestehende Qualitäts- und/oder Umweltmanagementsysteme integriert werden kann.

Einem guten Arbeitsschutz-/Sicherheitsmanagement sollte innerhalb einer Organisation genauso viel Bedeutung zukommen, wie anderen Kernaspekten der unternehmerischen Tätigkeit. Dazu ist ein gut strukturierter Ansatz erforderlich, mit dem Gefährdungen erkannt, bewertet und gelenkt werden können.
Vorteile, die sich aus der Einführung eines Arbeitsschutz-/Sicherheitsmanagementsystems ergeben können:

- geringere Personalausfälle und damit ein Instrument zur Steigerung der Produktivität durch eine optimale Nutzung der Ressourcen, insbesondere auch der Humanressourcen
- Verbesserung der betrieblichen Arbeitsabläufe
- größere Rechtssicherheit
- Transparenz durch strukturiertes Einbeziehen der Vorschriftensysteme im Unternehmen und gegenüber Externen schaffen
- Synergien mit anderen Managementsystemen können nutzbar gemacht werden
- mögliche Senkung von Unfallversicherungsprämien

Ein Arbeitsschutz-/Sicherheitsmanagementsystem sollte daher die Arbeitsschutzpolitik einschließlich der gesetzlichen Anforderungen, die Aufbau- und Ablauforganisation, die Mittel, Methoden/Verfahren und die Prozesse und Ressourcen, die zur Umsetzung erforderlich sind, beinhalten.

5.1 Geschichtliche Entwicklung

- Die ersten Niederschriften des Arbeitsschutzes findet man bereits 400 v. Chr..

 „Wenn du ein neues Haus baust, so mache ein Geländer ringsum auf Deinem Dache, damit Du nicht Blutschuld auf dein Haus lädst, wenn jemand herabfällt“. (5. Buch Moses, Kapitel 22, Vers 8).

- 1866: Gründung des ersten Dampfkesselüberwachungsvereins, dem heutigen Technischen Überwachungsverein (TÜV)
- 1871: Einführung der staatlichen Gewerbeaufsicht
- 1884: Das Unfallversicherungsgesetz löst die Unternehmenshaftpflicht ab. Die Berufsgenossenschaften hatten die Aufgabe eine Unfallversicherung zu erstellen, sowie eine Unfallverhütungsvorschrift zu erlassen und deren Beachtung durch eigene technischeAuditoren zu kontrollieren.

- Richtlinien für ein Arbeitsschutzmanagementsystem:
 - Britischer Normansatz BS 8800:1996
 - BSI-OHSAS 18001:1999
 - Sicherheits-Certifikat-Contraktoren (SCC)
 - Länderausschuss für Arbeitsschutz und Sicherheitstechnik (LASI)
 - Occupational Health- and Risk-Management (OHRIS) des bayerischen Staatsministeriums für Gesundheit, Ernährung und Verbraucherschutz
5.2 Anforderungen an ein Arbeitsschutz-/Sicherheitsmanagement

Unter Berücksichtigung bisheriger Erfahrungen und künftiger Erfordernisse im Arbeitsschutz-/Sicherheitsmanagement sollte das System mindestens folgende Anforderungen erfüllen:

- den Arbeitsschutz weiter verbessern
- die Prävention als vorrangiges Ziel im Unternehmen festschreiben
- die Einbeziehung der Beschäftigten und ihrer betrieblichen Interessenvertretungen verbessern
- die Motivation der Unternehmensleitungen und aller Beschäftigten erhöhen und damit auch die Qualität der Produkte und Dienstleistungen verbessern helfen
- die betriebswirtschaftlichen Kosten verringern, z.B. die durch Personalausfälle infolge von Unfällen entstehen können
- Synergien mit anderen Führungssystemen nutzbar machen
- zu einer verbesserten Transparenz im Unternehmen und gegenüber Externen führen
- das Konzept muss umfassend sein, das bedeutet, dass alle Führungselemente und Elemente der Aufbau- und Ablauforganisation des Unternehmens hinsichtlich ihrer normativen, strategischen und operativen Funktionen sowie ihre Wirkungsweise im Sinne einer Verifikation beschrieben werden
- das System muss ganzheitlich und kompatibel zu bestehenden Managementsystemen, wie Umwelt- und Qualitätsmanagementsystemen sein und die Übernahme in ein universelles Führungssystem (Generic Management System) ermöglichen; die Schnittstellen müssen festgelegt und Überschneidungen beschrieben sein
- es sind spezifische Arbeitsschutzelemente zu entwickeln, die dem umfassenden Präventionsansatz Rechnung tragen und den speziellen Anforderungen bezüglich der Führungselemente und der Elemente der Aufbau- und Ablauforganisation genügen
- Arbeitsschutz-/Sicherheitsmanagementsysteme müssen gewährleisten, dass Defizite bei der Planung und Durchführung des Arbeitsschutzes und Schwachstellen der Arbeitsschutzorganisation erkannt und die Ursachen derartiger Defizite beschrieben werden, sowie die Durchführung der erforderlichen Maßnahmen und die Kontrolle ihrer Wirksamkeit gewährleistet sind
- Arbeitsschutz-/Sicherheitsmanagementsysteme müssen die innerbetriebliche Überwachungspflicht auf allen Ebenen berücksichtigen
- die für die Systembewertung und -kontrolle erforderlichen Informationen sind in geeigneter Weise zu dokumentieren
- Arbeitsschutz-/Sicherheitsmanagementsysteme müssen die Möglichkeit der Systemkontrolle bieten; damit sind wesentliche Voraussetzungen gegeben, die Eigenkontrolle sowie die Aufsichtstätigkeit der zuständigen Behörden/Aufsichtsdienste zu optimieren
5.3 Normungen für Arbeitsschutz-/Sicherheitsmanagementsysteme

5.3.1 Britischer Standard BS 8800:1996

Ziel des Systems ist es, Unternehmen bei der Einführung eines ASSMS so zu unterstützen, dass Mitarbeiter und Dritte, deren Gesundheit und Sicherheit durch die Tätigkeit des Betriebes gefährdet sind, geschützt werden.

Beim Aufbau (siehe Bild 57) eines ASSMS empfiehlt der BS 8800 einen 6-stufigen Aufbau:

![Bild 57: Arbeitsschutz-/Sicherheitsmanagementsystem nach BS 8800](image)

- **Initial Status Review (Plan):**
OHS (Occupational Health and Safety) Policy (Plan):
Die Unternehmensleitung legt die Arbeitsschutzpolitik fest. Diese beinhaltet die Festlegung der kontinuierlichen Verbesserung der Arbeitsschutzleistung unter Einhaltung der Gesetze als Mindestanforderung.

Planning (Plan):
Nachdem in der Politik die langfristigen Rahmenbedingungen festgelegt wurden, erfolgt innerhalb der Planung eine Risikoanalyse der einzelnen Tätigkeiten und eine Bestimmung der gesetzlichen und anderen Anforderungen. Außerdem werden Pläne erstellt, die dazu dienen, die Ziele, die aus der Arbeitsschutzpolitik abgeleitet werden, den verantwortlichen Mitarbeitern samt Budgets zuzuordnen.

Implementation and Operation (Do):

Checking and Corrective Action (Check):

Management Review (Check):
Die Entwicklung des Systems ist von der Unternehmensführung zu beurteilen.

Der BS 8800 legt Forderungen fest, die es einer Organisation ermöglichen, eine Arbeitsschutzpolitik und entsprechende Ziele zu formulieren, diese systematisch umzusetzen und zu verbessern. Er ist auf Organisationen anwendbar, die Folgendes anstreben:

- Umsetzung, Aufrechterhaltung und Verbesserung des Arbeitsschutz-/Sicherheitsmanagementsystems
- sich selbst Vertrauen in die Konformität mit der erklärten Arbeitsschutzpolitik zu schaffen
- die Konformität anderen gegenüber darzulegen
- Zertifizierung ihres Arbeitsschutz-/Sicherheitsmanagementsystems durch eine externe Organisation
- Selbstermittlung und Konformitätserklärung über die Einhaltung dieser Norm

Fazit:
BS 8800 ist als Leitfaden und Hilfestellung für den Aufbau eines Arbeitsschutz-/Sicherheitsmanagementsystems zu verstehen. In Deutschland ist dieses Managementsystem ein nicht zertifizierungsfähiger Standard.

5.3.2 BSI-OHSAS 18001:1999

In einem dokumentierten Managementsystem werden:

- die Politik mit den strategischen Vorgaben zu Arbeitsschutz/Sicherheit formuliert
- Verantwortlichkeiten sowie Beschreibungen der Vorgehensweise hinsichtlich der Erhebung, Aktualisierung, Umsetzung und Kontrolle rechtlicher Vorgaben festgelegt
- Risiken/Gefährdungen identifiziert und die Mitarbeiter hierzu geschult und unterwiesen
- Leistungskriterien, Ziele und Programme zur kontinuierlichen Verbesserung festgelegt
- Korrektur- und Vorsorgemaßnahmen sowie interne Audits und die Bewertung durch das Management beschrieben

Die BSI-OHSAS 18001:1999 verlangt vom Unternehmen: [124]

- Erarbeitung einer den Sicherheitsrisiken angemessenen Sicherheitspolitik
- Risikoanalyse, Planung, Zielsetzung und Programmerstellung zur Reduktion von Arbeitsunfällen im Unternehmen
- Integration der Forderungen in die Unternehmensprozesse
- interne Auditierung und periodische Bewertung des Systems durch die oberste Leitung

Schlüsselelement zu einem effektiven Arbeitsschutz-/Sicherheitsmanagement ist die Risikoanalyse, die in Europa gesetzlich gefordert ist. Das Ergebnis zeigt u.a. deutlich, wo Hauptrisiken liegen, wie diese beseitigt werden können bzw. in welchen Bereichen Ziele und Programme für die kontinuierliche Verbesserung des Arbeitsschutzes/Sicherheit gesetzt werden sollten, welche Schulungen notwendig sind.
Arbeitsschutz-/Sicherheitsmanagement

BSI-OHSAS 18001-Zertifikate sind 3 Jahre gültig, worauf - im Sinne der kontinuierlichen Weiterentwicklung – eine Rezertifizierung stattfindet.

Bild 58: *Elemente von BSI OHSAS 18001:1999*

Fazit:

5.3.3 Sicherheits-Certifikat-Contraktoren (SCC)-Management

Angesprochen waren ursprünglich Fremdfirmen, die auf dem Gelände eines chemischen Unternehmens tätig sind und dort z.B. Montage-, Wartungs- oder Reinigungs-

Das Zertifikat ist drei Jahre gültig, wobei jährlich ein Überwachungsaudit und nach drei Jahren ein Wiederholungsaudit durchzuführen sind.

Das SCC-System ist flexibel. Es wird unterschieden:

- SCC*-System für kleine Betriebe
- SCC**-System für größere Betriebe und Generalunternehmer
- SCP-System speziell für Personaldienstleister

SCC*, SCC** und SCP unterscheiden sich durch die Beurteilungskriterien, den Auditierungsumfang und die Anzahl der Pflichtfragen.

Fazit:

Doch auch für Unternehmen, die nicht auf dem Werksgelände des Auftraggebers tätig werden, hat der Aufbau eines Sicherheitsmanagementsystems vielfältige Vorteile:

- Förderung des Sicherheitsbewusstseins der Mitarbeiter und Vorgesetzten
- Verbesserung der Rechtssicherheit für Unternehmer und Vorgesetzte
- Reduzierung von direkten und indirekten Unfallkosten
- Wettbewerbsvorteile für zertifizierte Unternehmen
- Kostenreduzierung durch Vermeidung von Mehrfachauditorungen
- Verbesserung der Organisation des Arbeits- und Gesundheitsschutzes
- Arbeiten mit hohem Risiko werden ausschließlich von dafür qualifizierten Mitarbeitern durchgeführt
- einheitliche Bewertung von Contraktoren hinsichtlich Arbeits- und Gesundheitsschutz
5.3.4 OHRIS

Das bayerische Arbeitsministerium hat zusammen mit der Industrie 2001 aufbauend auf den Gedanken des Umweltpaktes Bayern ein "Occupational Health- and Risk- Managementsystem", genannt OHRIS, entwickelt. OHRIS soll den Unternehmen als Anleitung dienen, die noch nicht über ein ASSMS verfügen. In den Unternehmen, die bereits erfolgreich ein solches anwenden, soll die Konzeption als Vergleichsmaßstab fungieren. Die Anleitung richtet sich nicht nur an größere Unternehmen, die über mehrere Führungsebenen verfügen; sie kann auch auf kleine und mittlere Unternehmen übertragen werden. Im Rahmen der Schriftenreihe - Managementsysteme für Arbeitsschutz und Anlagensicherheit - erschienen folgende Publikationen:

Band 1: Occupational Health- and Risk-Managementsystem - Grundlagen und Systemelemente
Band 2: Occupational Health- and Risk-Managementsystem - System- und Complianceaudit
Band 3: Occupational Health- and Risk-Managementsystem - Dokumentation und Handbuch zum Managementsystem (in Vorbereitung)
Band 4: Occupational Health- and Risk-Managementsystem - Handlungsanleitung für kleine und mittlere Unternehmen

Das Occupational Health- and Risk-Managementsystem wird wie die Managementsysteme für Qualität und Umwelt durch Systemelemente definiert. Diese Systemelemente sind Bestimmungselemente und Handlungsvorgaben, durch die die unternehmenspolitischen Vorgaben in der Qualitätssicherung, im Umwelt-/Arbeitsschutz, der Anlagensicherheit, im normativen Bereich eines Unternehmens, bei strategischen Planungen und im operativen Handeln systematisch erreicht und ihre Realisierung überprüft werden können. Die zehn Systemelemente des OHRIS leiten sich aus fünf systemausrichtenden Kernelementen und fünf spezifischen, Arbeitsschutzbezogenen Managementelementen ab. Die systemausrichtenden Kernelemente umfassen die Handlungsvorgaben für:

- Aufgaben und Verantwortung der Leitung einer Organisation
- das Managementsystem
- die Lenkung der Aufzeichnungen
- das Personal
- die im Rahmen des OHRIS durchgeführten Audits

Die systemausrichtenden Kernelemente sind - im Sinne eines Generic Managementsystems - für alle themenorientierten Managementsysteme gleichartig aufgebaut und können synergetisch genutzt werden. Die spezifischen, Arbeitsschutzbezogenen Managementelemente beinhalten die Anforderungen in Hinblick auf:

- einzuhaltende Verpflichtungen
- Prävention
- Überprüfung, Überwachung, Korrekturmaßnahmen
- Regelungen für Betriebsstörungen und Notfälle
- Beschaffung

Fazit:
Die vorliegende Konzeption soll den Betrieben als Anleitung dienen, die noch nicht über ein Arbeitsschutz- und Sicherheitsmanagementsystem verfügen; den Betrieben, die bereits erfolgreich ein solches System anwenden, soll die Konzeption als Vergleichsmaßstab zur Ergänzung und Verbesserung dienen.

5.3.5 LASI - Spezifikation zur freiwilligen Einführung, Anwendung und Weiterentwicklung von Arbeitsschutzmanagementsystemen

Fazit:
Die OHRIS setzt die grundlegenden, inhaltlichen Anforderungen an Arbeitsschutzmanagementsystemkonzepte, die in den "Eckpunkten des BMA, der obersten Arbeitsschutzbehörden der Bundesländer, der Träger der gesetzlichen Unfallversicherung und der Sozialpartner zur Entwicklung und Bewertung von Konzepten für Arbeitsschutzmanagementsysteme" (BArbBl 02/99) festgelegt wurden, um und ist in seiner Struktur an diese Eckpunkte angepasst.

5.4 Vergleich von Arbeitsschutz-/Sicherheitsmanagementsystemen

So unterschiedlich die Konzepte in Herkunft, Ausrichtung oder Art sein mögen, sie haben eines gemeinsam, sie geben Hinweise, wie das Thema Arbeitsschutz-/Sicherheitsmanagement in bestehende Qualitäts- und/oder Umweltmanagementsysteme integriert werden kann.
In der folgenden Tabelle 9 werden ausgewählte europäische Ansätze verglichen. [126]
Tabelle 10: Vergleich europäischer Ansätze zu AMS

<table>
<thead>
<tr>
<th>Konzept</th>
<th>Art</th>
<th>Zertifizierung</th>
<th>Inhalt</th>
<th>Besonderheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 8800</td>
<td>British Standards Institute (BSI)</td>
<td>Norm</td>
<td>- 0. Einführung
 1. Definition
 2. Systemelemente
 3. Anforderungen und Prüfungsmethoden</td>
<td>- Finanzielle Förderung für kleinere Unternehmen bei Umsetzung des BS 8800</td>
</tr>
</tbody>
</table>
5.5 Arbeitsschutz-/Sicherheitsmanagementsysteme der Automobilindustrie

Im Gegensatz zur Problematik der Qualitätsmanagementsysteme, die seitens der Automobilhersteller sowie Automobilzulieferindustrie durch spezielle Normen bzw. Ergänzungen zu allgemeinen Normen bereits ein nicht mehr wegzudenkender Standard ist und auch die noch recht junge Entwicklung im Bereich des Umweltmanagementsystems, die eine Anerkennung und zum Teil auch Forderung ist, scheint das Interesse an einer Einführung von Arbeitsschutz-/Sicherheitsmanagementsystemen bei den Automobilherstellern und ihren Zulieferern nicht oder zumindest noch nicht so ausgeprägt zu sein.

Ein Grund hierfür ist sicherlich die fehlende nationale bzw. internationale Standardisierung auf diesem Gebiet.

Wenn in Zukunft die Aspekte des Arbeitsschutz-/Sicherheitsmanagementsystems bereits in einem frühen Stadium der Einführung von geforderten automobilspezifischen Qualitätsmanagementsystemen auch berücksichtigt werden, könnten zeit- und kostenintensive Nachbesserungen am Sicherheitskonzept entfallen (siehe Bild 59).

Bild 59: Kosten-Wirkungsdiagramm auf die Zeit
6 Integration von verschiedenen Managementsystemen

6.1 Problematik separater Teilmanagementsysteme

- **Normative Ebene:** Hier entstehen durch die Existenz von Qualitäts-, Umwelt- und Arbeitsschutz-/Sicherheitspolitik sowie den daraus abgeleiteten Zielsetzungen und strategischen Programmen Konflikte.
- **Operative Ebene:** Identische Abläufe und Tätigkeiten werden mehrfach aus unterschiedlicher Sichtweise geregelt. Ein Beispiel hierfür ist das Bestehen von verschiedenen Verfahrensanweisungen für das Qualitäts- und Umweltmanagement zum Thema „Beschaffung“, welche unter Umständen nicht aufeinander abgestimmt sind und im Extremfall widersprechende Regelungen zum Inhalt haben.
- Aus einer getrennten Erstellung, Aktualisierung und Verteilung der Dokumente resultiert ein Mehraufwand und eine umfangreiche Dokumentation. Die Folge davon ist, dass diese nicht von den Mitarbeitern genutzt, sondern lediglich für die regelmäßige Überprüfung aufrechterhalten werden und somit zweckentfremdet sind.
Redundante oder sich widersprechende Detailregelungen führen bei den Mitarbeitern zu Identifikationsproblemen, die durch wechselnde Schwerpunktsetzungen (Qualitäts-, Umwelt- und Arbeitsschutz-/Sicherheitsorientierung) hervorgerufen werden.

In der Regel erfolgt im Vorfeld eines Audits über einen gewissen Zeitraum hinweg eine Konzentration auf das zu überprüfende Teilsystem. Danach gilt diesem Aufgabengebiet bis zur nächsten Kontrolle eine geringere Aufmerksamkeit. Das Hauptaugenmerk wird nun auf das Folgende zu überprüfende System gelegt.

Mehrfachaudits aufgrund nicht abgestimmter Auditzyklen führen zu einer Behinderung des gesamten betrieblichen Ablaufs.

Insellösungen zum Management in den Unternehmen und die durch sie ausgelösten Probleme sind die Ausgangsbasis für Integrierte Managementsysteme.

6.2 Grundgedanken und Ziele der Integration

Die Beobachtung, dass es in den Unternehmen zunehmend mehr Managementsysteme gibt, die oftmals weitgehend isoliert voneinander existieren und nur wenig koordiniert sind, führt zu der Forderung nach einem „Management der Managementsysteme“. Dieses muss die Einordnung der Teilmanagementsysteme in ein übergeordnetes Managementsystem erlauben. Dazu merkt Seghezzi an: [128]

„Je größer und komplexer ein Unternehmen ist, desto mehr ist es notwendig, die Komplexität der Führung durch Aufsplittung in Teilführungssysteme zu reduzieren und gleichzeitig diese Teilführungssysteme zu einem ganzheitlichen Führungssystem zusammenzufassen, das in seiner umfassenden Ganzheitlichkeit die Komplexität nicht reduziert, sondern ihr Rechnung trägt und sie in Wettbewerbsvorteile ummünzt.“

Bei der Integration im Rahmen dieser Arbeit sollen vorher getrennte Objekte zu einem Ganzen zusammengeführt werden, ohne das einzelne Teile verloren gehen. Daraus resultierend, ergeben sich folgende Fragen:

Was soll integriert werden?
Warum soll integriert werden?
Wie soll integriert werden?

Zu Frage 1 - Was soll integriert werden?:
Die Objekte der Integration sind ausgewählte Managementsysteme für Qualität, Umwelt und Arbeitsschutz/Sicherheit. Eine Erweiterung des IMS, z.B. um die Elemente des Risi-
ko-, oder Finanzmanagements sowie die Einordnung sämtlicher Elemente in das Gesamtmanagementsystem eines Unternehmens, ist denkbar, wird aber im Rahmen dieser Arbeit nicht näher betrachtet.

Zu Frage 2 – *Warum soll integriert werden?*

An das Management von Unternehmen werden in der heutigen Zeit aus verschiedensten Richtungen (siehe Bild 60) Forderungen gestellt, daher müssen Qualitäts-, Umweltschutz- und Arbeitsschutz-/Sicherheitsaspekte bei der operativen, taktischen und strategischen Entscheidungsfindung mit einbezogen werden. Für die Unternehmen ist es mit erheblichem Aufwand verbunden, für alle drei Managementbereiche ein eigenes System mit dazugehöriger Dokumentation aufzubauen, ganz zu schweigen vom Aufwand des jeweiligen Zertifizierungs- bzw. Registrierungsvorganges. [130], [131]

Bild 60: Beteiligte Parteien an Managementsystemen

An den Schnittstellen, von denen einige hier aufgezeigt werden sollen (siehe Bild 61), wird deutlich, wie sehr die drei Managementbereiche ineinander greifen.

Bild 61: Schnittmengen zwischen verschiedenen Managementsystemen
Integration von verschiedenen Managementsystemen

Schnittmenge: Qualitäts- und Umweltmanagement
Die ökologische Verträglichkeit der Produkte und deren Herstellung wird aufgrund des gesteigerten Umweltbewusstseins in der Bevölkerung immer mehr zu einem Qualitätskriterium, auf das die Unternehmen eingehen müssen. Unternehmen sollten heute zunehmend die Gesellschaft als Ganzes ansehen, nicht nur ihre direkten Abnehmer.

Beispiel: DIN EN ISO 9001:2000 - Schnittstelle zum Umweltmanagement

Schnittmenge: Qualitäts- und Arbeitsschutz-/Sicherheitsmanagement
Ein offensichtlicher Zusammenhang besteht darin, dass die Gestaltung des Arbeitsumfeldes als Aufgabe des Arbeitsschutzes direkten Einfluss auf die Qualität der Arbeit haben kann, wie z.B. bei der Gestaltung der Lichtverhältnisse am Arbeitsplatz.

Beispiel: DIN EN ISO 9001:2000 - Schnittstelle zum ASSM
Arbeitsumgebung: Die Organisation muss die Arbeitsumgebung ermitteln, bereitstellen und aufrechterhalten, die zum Erreichen der Konformität mit den Produktanforderungen erforderlich ist.

Schnittmenge: Umwelt- und Arbeitsschutz-/Sicherheitsmanagement
Diese Schnittstelle ist insbesondere immer dann betroffen, wenn die Belastungen oder Gefährdungspotentiale nicht nur auf den Mitarbeiter am Arbeitsplatz wirken, sondern auch auf die Umwelt außerhalb, wie z.B. Lärmemissionen oder gefährdende Stoffe in der Atemluft.

Beispiel: DIN EN ISO 14001:1996 - Schnittstelle zum ASSM
Notfallvorsorge und -maßnahmen: Die Organisation muss Verfahren einführen und aufrechterhalten, um mögliche Unfälle und Notfallsituationen zu ermitteln und auf diese entsprechend zu reagieren sowie Umweltauswirkungen, die damit verbunden sein könnten, zu verhindern und zu begrenzen.

Die vorangegangenen Ausführungen haben gezeigt, dass bei den vorgestellten Teilmanagementsystemen eine Reihe von Überschneidungen existieren. Ähnliche Forderungen der unterschiedlichen Normen und Leitfäden können im Falle einer differierenden Auslegung zu erheblichen Unstimmigkeiten führen, welche den betrieblichen Ablauf stören. Bei jedem einzelnen Managementsystem ist somit zunächst darauf zu achten, dass es sich in die Ausrichtung des gesamten Unternehmens einbinden lässt. Ent sprechen z.B. Qualitätspolitik und die daraus abgeleiteten Zielsetzungen nicht den Zielen des Unternehmens oder werden Vorgänge wie die Beschaffung von den drei verschiedenen Sichtweisen aus entsprechend unterschiedlich geregelt, entstehen Konflikte. Diese hemmen die unternehmerischen Prozesse und stehen dem Ziel einer kontinuierlichen Verbesserung der Teilsysteme und der entsprechenden Unternehmensleistung entgegen. Sollen nicht nur Redundanzen und Störungen vermieden, sondern etwa durch die Identifikation und Nutzung von Synergien auch Verbesserungen und Einsparungen er-
Integration von verschiedenen Managementsystemen

reicht werden, ist es erforderlich, die Teilsysteme in ein ganzheitliches Gesamtsystem zu integrieren.

Im Gegensatz zur Erfüllung der Einzelforderungen durch Einzelmaßnahmen soll ein IMS alle Forderungen ohne innere Widersprüche gleichzeitig erfüllen und zu Einsparungen durch Verringerung von Redundanzen bei den Normenwerken führen. [132], [133]

Bild 62: Einsparpotential durch die Einführung eines IMS

Moderne Managementsysteme sind nicht nur Instrumente der Unternehmensleitung, sondern sie müssen die aktive Beteiligung der Mitarbeiter aller Ebenen und Beschäftigungsbereiche an der Lösung entsprechender Probleme ermöglichen und unterstützen.

Die Integration verschiedener Managementsysteme hat einige Vorteile, so profitieren Unternehmen von einem reduzierten personellen, zeitlichen und finanziellen Aufwand in Form von: [134], [135], [136], [137]

- **reduzierter Dokumentation:** es wird nur ein Handbuch geschrieben (siehe Bild 62)
- **reduziertem zeitlichen Aufwand:** Schulungen und Audits können kombiniert durchgeführt werden
- **reduziertem personellen Aufwand:** besonders kleine Unternehmen können mit nur einem oder wenigen Verantwortlichen diese Aufgabe übernehmen

Der entscheidende langfristige Nutzen von Integrierten Managementsystemen für die Unternehmen ist in einer gesteigerten Transparenz zu sehen, die sich sowohl intern als auch extern auszahlt. [138]

In einem bereits 1996 verfassten Bericht wird betont:

„Nur durch die Integration der Managementbereiche QM, UM und ggf. Arbeitsschutz/Sicherheit wird es auf die Dauer gelingen, die Managementbereiche mit betriebswirtschaftlich sinnvollem Aufwand am Leben zu halten und eine Anwendung auf allen Ebenen sicherzustellen.“ [139]

Eine Integration der Teilsysteme erfolgt somit hauptsächlich aus der Überlegung heraus, dass bestimmte Unternehmensziele mit einem IMS besser erreicht werden können, als

Tabelle 11: Ziele eines IMS

<table>
<thead>
<tr>
<th>Basisziele</th>
<th>Effizienzziele</th>
<th>Sicherungsziele</th>
<th>Innovationsziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualität:</td>
<td>▪ Anwendung der „besten Managementpraxis“</td>
<td>▪ Sicherung der Rechtskonformität</td>
<td>▪ Kontinuierliche Verbesserung der Systemleistung</td>
</tr>
<tr>
<td>Zufriedene Kunden</td>
<td>▪ Kosteneinsparung durch Redunanzreduktion</td>
<td>▪ Vermeidung und Verminderung von Haftungsrisiken</td>
<td>▪ Informationsbasis zur Unterstützung von Entscheidungen</td>
</tr>
<tr>
<td>Optimale Qualität</td>
<td>▪ Minimierung des Auditierungsaufwands</td>
<td>▪ „gerichtsfeste“ Organisation</td>
<td>▪ Entwicklung neuer Managementinstrumente und Organisationsabläufe</td>
</tr>
<tr>
<td>„Null-Fehler“</td>
<td>▪ Klare Verantwortlichkeiten</td>
<td>▪ Vermeidung von Imageschäden</td>
<td>▪ Entwicklung neuer Technologien, Produkte und Dienstleistungen</td>
</tr>
<tr>
<td>Umwelt:</td>
<td>▪ Schnittstellen-/mengenoptimierung</td>
<td>▪ Sicherung der Rechtskonformität</td>
<td>▪ Anpassungsfähigkeit an sich ändernde Umfeldbedingungen</td>
</tr>
<tr>
<td>Geringe Umweltbe-</td>
<td>▪ Konfliktfreie Arbeitsanweisung</td>
<td>▪ Vermeidung und Verminderung von Haftungsrisiken</td>
<td>▪ Anpassungsfähigkeit an sich ändernde Anforderungen der unterschiedlichen Teilmanagementssysteme</td>
</tr>
<tr>
<td>lastung</td>
<td>▪ Übersichtlichere Dokumentation</td>
<td>▪ Kontaktgeschäfte „gerichtsfeste“ Organisation</td>
<td></td>
</tr>
<tr>
<td>Schonung der natür-</td>
<td>▪ Einheitliche, verständliche Sprache</td>
<td>▪ Kontinuierliche Verbesserung der Systemleistung</td>
<td></td>
</tr>
<tr>
<td>lichen Ressourcen</td>
<td>▪ Größere Identifikation und Motivation der Mitarbeiter</td>
<td>▪ Informationsbasis zur Unterstützung von Entscheidungen</td>
<td></td>
</tr>
<tr>
<td>**Arbeitsschutz/</td>
<td>▪ Anwendung der „besten Managementpraxis“</td>
<td>▪ Sicherung der Rechtskonformität</td>
<td>▪ Entwicklung neuer Technologien, Produkte und Dienstleistungen</td>
</tr>
<tr>
<td>Sicherheit:**</td>
<td>▪ Zufriedene Kunden</td>
<td>▪ Vermeidung von Haftungsrisiken</td>
<td>▪ Anpassungsfähigkeit an sich ändernde Umfeldbedingungen</td>
</tr>
<tr>
<td>Keine Unfälle</td>
<td>▪ Optimale Qualität</td>
<td>▪ „gerichtsfeste“ Organisation</td>
<td>▪ Anpassungsfähigkeit an sich ändernde Anforderungen der unterschiedlichen Teilmanagementssysteme</td>
</tr>
<tr>
<td>Gesunde Mitarbeiter</td>
<td>▪ „Null-Fehler“</td>
<td>▪ Vermeidung von Imageschäden</td>
<td></td>
</tr>
</tbody>
</table>

Integration von verschiedenen Managementsystemen

Das in Bild 63 ausgewiesene Zwei-Säulen-Konzept zeigt die Wirkungsweise eines IMS.

![Bild 63: Zwei-Säulen-Konzept des Integrierten Managements](image)

Zu Frage 3 – „Wie soll integriert werden?“:

![Bild 64: Aufbau eines IMS](image_url)

Beim Aufbau eines IMS sind grundsätzlich verschiedene Rahmenbedingungen zu unterscheiden. So können zunächst folgende Ausgangssituationen bestehen:

A Es besteht bislang noch kein spezielles Managementsystem.
B Es besteht ein QMS nach der entsprechenden Norm der DIN EN ISO 9000er-Reihe. UM bzw. ASSMS existieren noch nicht.
C Es bestehen ein jeweils separat aufgebautes und nicht verknüpftes QM und UM, aber noch kein ASSMS.
D Alle drei Systeme existieren bereits, sind jedoch noch nicht miteinander verknüpft.
Integration von verschiedenen Managementsystemen

Bei der Differenzierung der Integrationsaktivitäten nach ihrer Integrationstiefe können fünf Kategorien gebildet werden:

- Informationsaustausch zwischen den Fachbereichen
- überlappende Arbeitskreise
- integrierte Richtlinien, Verfahrens- und Arbeitsanweisungen
- gemeinsame Führungsverantwortung
- Ernennung eines Systemverantwortlichen

6.3 Vergleich der Teilsysteme als Basis der Integration

Die Basis für den Aufbau eines IMS bildet die Gegenüberstellung der in den Kapiteln 3-5 betrachteten Managementsysteme. Ohne auf die Überschneidungen in den Regelungen der spezifischen Normen und Leitfäden der betrachteten Teilsysteme einzugehen, werden grundlegende Unterschiede in der folgenden Tabelle vorgestellt.

Tabelle 12: Konzeptionelle Unterschiede zwischen den Managementsystemen

<table>
<thead>
<tr>
<th>Qualitätsmanagement</th>
<th>Umweltmanagement</th>
<th>Arbeitsschutz-/Sicherheitsmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zielsetzungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimale Qualität der Produkte und Prozesse</td>
<td>Schutz der Umwelt</td>
<td>Schutz des Menschen vor Unfall- und Gesundheitsrisiken</td>
</tr>
<tr>
<td>Null-Fehler</td>
<td>Verbesserung des Umweltmanagements</td>
<td></td>
</tr>
<tr>
<td>Kundenzufriedenheit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anspruchsgruppen/öffentliches Interesse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interne und externe Kunden</td>
<td>Kunden</td>
<td>Mitarbeiter staatliche Aufsicht</td>
</tr>
<tr>
<td>Geldgeber</td>
<td>Lieferanten, ...</td>
<td></td>
</tr>
<tr>
<td>Mitarbeiter</td>
<td>Nachbarn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Umweltschutzverbände</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parteien</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gemeinden, ...</td>
<td></td>
</tr>
<tr>
<td>Komplexität der Materie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mittel: Ingenieurwissenschaft, Prozessbeherrschung</td>
<td>sehr hoch: Naturwissenschaften, Umweltrecht, Umwelttechnik, Umweltmanagement</td>
<td>mittel: Ergonomie, Sicherheitstechnik</td>
</tr>
<tr>
<td>Auswirkungen bei Verstößen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produkthaftung Schadensersatzzahlung, Wiedergutmachung des Schadens oft möglich, wirtschaftlicher Schaden</td>
<td>Haftungsansprüche an Unternehmen und Leitung Geldstrafen strafrechtliche Verfolgung Imageverlust</td>
<td>wie bei Umweltmanagement</td>
</tr>
<tr>
<td></td>
<td>Wiedergutmachung meist unmöglich wirtschaftliche Verluste</td>
<td></td>
</tr>
</tbody>
</table>

6.4 Modelle zur Integration

Das Hauptaugenmerk dieses Abschnitts liegt auf der „technischen“ Integration der einzelnen Teilmanagementsysteme. Es werden verschiedene Konzepte zur Zusammenführung von QMS, UMS und ASSMS zu einem IMS vorgestellt. Nach einer kurzen Be-
schreibung der Ausgangssituation (Startposition des Unternehmens) werden je nach Ausmaß und Umfang der Integration (Integrationstiefe) verschiedene Typisierungen der Integration skizziert.
Mehrere Modell-Varianten zur Integration von QMS, UMS und ASSMS, die auch zu kombinieren sind, stehen den Unternehmen zur Verfügung: [146], [147], [148]

- summarische Integration
- adaptive Integration
- prozessorientierte Integration

6.4.1 Summarische Integration
Den einfachsten Fall einer Verbindung der Teilmanagementsysteme stellt die Summation paralleler QMS, UMS und ASSMS dar. Dieser zu Beginn der 90er Jahre diskutierte Ansatz sieht keine Verknüpfung der einzelnen Teilbereiche vor. Das UMS wurde und wird vielmehr unabhängig vom bereits bestehenden oder noch zu errichtenden QMS implementiert, ebenso das ASSMS. [149]
Für Unternehmen mit einem bereits bestehenden Managementsystem kann dies eine gute Lösung sein, weitere Managementsysteme zu ergänzen ohne die bereits erarbeiteten Strukturen ändern zu müssen. [150]

6.4.2 Adaptive Integration
Integration von verschiedenen Managementsystemen

6.4.3 Prozessorientierte Integration

- Die Grundlage der Unternehmensstruktur bilden die Prozesse.
- Die Prozessorganisation besitzt einen funktionsübergreifenden Charakter. Im Unterschied zur Aufbauorganisation, die auf die funktionale Aufgabenorientierung ausgerichtet ist, hat die Prozessorganisation eine ganzheitliche Vorgangsbearbeitung zum Ziel.

- Analyse der Prozesse nach qualitäts-, umwelt- und arbeitsschutz-/sicherheitsrelevanten Aktivitäten
- Erweiterung der Prozessbeschreibung um die jeweiligen qualitäts-, umwelt- und arbeitsschutz-/sicherheitsrelevanten Aktivitäten
- Überprüfung jeder einzelnen Forderung der jeweiligen Normen, Leitfäden und Verordnungen hinsichtlich ihrer Erfüllung und Identifikation des jeweiligen Prozesses, in welchen sie integriert sind

6.5 Zielkonflikte von Integrationsmodellen

Bei der Einführung aller drei Managementsysteme (Qualität, Umwelt und Arbeitsschutz/Sicherheit) können sich Zielkonflikte (siehe Bild 65) ergeben und Kosten entstehen, die kurzfristig zu Gewinnminderungen führen. Auf lange Sicht betrachtet reduzieren sich jedoch die Kosten und dadurch kommt es zu einer Gewinnsteigerung. Um den Unternehmenserfolg zu sichern, sollten diese Systeme daher frühzeitig eingeführt werden. Je später sie eingeführt werden, desto höher sind die Kosten zur Beseitigung der zwischenzeitlich eingetretenen Ereignisse.

Bild 65: Potentielle Zielkonflikte

- Die Aufnahme von Sicherheits- und Qualitätszielen kann sich zunächst kostensteigernd auswirken und steht damit in Zielkonflikt mit den kurzfristigen Gewinnzielen.
- Berücksichtigt man die Qualitätsanforderungen bereits während der Produktentwicklung, werden wesentlich geringere Kosten verursacht, als wenn Änderungen an einem fertigen Erzeugnis durchgeführt werden müssen.
Integration von verschiedenen Managementsystemen

- Rückrufaktionen ausgelieferter Produkte verursachen hohe Kosten. Die Imageschäden für die Unternehmen und die Produkte sind dabei nur schwer zu erfassen.
- Werden bei der Arbeitssicherheit und dem Gesundheitsschutz Einsparungen vorgenommen und steigt deshalb die Anzahl der Unfälle, so steigen die damit in Verbindung stehenden Folgekosten.
- Die Anzahl und die Schwere der Unfälle wird in Deutschland im Rahmen der Tragsauseinbeziehung der Genossenschaften bei der Ermittlung der Beitragserhebung berücksichtigt.

Laut Meffert und Kirchgeorg herrscht eine konfliktäre Beziehung zwischen Umweltzielen und dem Ziel der Kosteneinsparung sowie der kurzfristigen Gewinnerzielung. In diesem Fall werden seitens des Unternehmens nur die gesetzlichen Mindestbedingungen erfüllt.

Wird der Umweltschutz als Chance wahrgenommen, um durch umweltrechtliche Prozess- und Produktinnovationen eine Kopplung zwischen Kosten- und Ertragszielen mit verbesserter Umweltqualität zu erreichen, so werden komplementäre Zielbeziehungen unterstellt. [153]

6.6 Kritische Würdigung der Integrationsmodelle

Die unterschiedlichen Sichtweisen der Managementsysteme sind ein unüberwindbares Integrationshemmnis. Der Vergleich der bestehenden Sichtweisen bestätigt zwar deren Unterschiede, deckt jedoch gleichzeitig eine Reihe von Überschneidungen auf, die durch eine Integration zu Synergien führen können.

Es entsteht eine verwirrende Informationsüberlastung, da verschiedene Stellen mit zusätzlichen Informationen versorgt werden, welche sie im Rahmen ihrer eigenen Aufgabenstellung eigentlich nicht benötigen. Insbesondere bei der angesprochenen EDV-Lösung kann dieses Argument eine gewisse Bedeutung erlangen. Entsprechend ausgebildete und geschulte Mitarbeiter werden jedoch in der Lage sein, sich die benötigten Informationen gezielt zu beschaffen.

Damit ein innovatives Integriertes Managementsystem sich auch in Zukunft weiterentwickeln kann, muss es folgende Kriterien erfüllen:

- Modularität und Offenheit (Einbindung weiterer Subsysteme muss möglich sein)
- Vollständigkeit und Ganzheitlichkeit
- Neutralität bezüglich der funktionalen Ausrichtung (nicht spezifisch für Qualität, Umwelt, Arbeitssicherheit, Finanzen, Personal etc.)
- Komplexitätsbewältigungskapazität
- Flexibilität (Anpassungsfähigkeit an sich änderndes Unternehmensumfeld)
- Einfachheit, Verständlichkeit, Akzeptanz
- Differenzierbarkeit
- Einbindung des spezifischen Unternehmensumfelds
- Innovationsförderung
- Einheitlichkeit der Abstraktionsgrade auf jeder Ebene
- Anwendbarkeit für sämtliche Branchen und Unternehmensgrößen
- Eindeutigkeit
- Fähigkeit zur Weiterleitung der Unternehmensphilosophie
- Internationalität und Freiheit von kulturellen Eigenheiten

6.7 Integrierte Managementsysteme für die Automobilindustrie

Ausgelöst durch die ersten Stichprobentabellen 1970 entstanden die klassischen QM-Prüfungen in den Unternehmen (siehe Bild 66). Geprüft wurde erst nach den Fertigungsschritten, was zur Folge hatte, dass der Ausschuss und die Nacharbeit enorm hohe Kosten verursachten.
Im Zuge der Internationalisierung bewirkte der vom Kunden, im Rahmen dieser Arbeit sind das die Automobilhersteller, erzeugte Marktdruck auf Lieferanten und Dienstleister eine verstärkte Zuwendung zum Qualitätsmanagement mit dem Ziel, diese nach der international anerkannten Normenreihe DIN EN ISO 9000ff zertifizieren zu lassen. Dies bedeutet die Durchführung von Prüfungen während der Fertigungsschritte der Produktion sowie die Integration aller Abteilungen vom Entwicklungsprozess bis zur Auslieferung der Produkte.

Bild 66: Entwicklung zum IMS

Aus der Vielzahl von Richtlinien und Vorgaben entwickelte sich dann Ende der 90er Jahre der Trend hin zu Integrierten Managementsystemen.

Ziel dieser Arbeit war es eine Synopse zu entwickeln, die die branchenspezifischen Anforderungen vorrangig der nationalen Automobilindustrie erfüllt und Basis für ein innovatives und zertifizierungsfähiges IMS ist. Es wurde nicht angestrebt eine Musterdokumentation für ein kleines und mittleres Unternehmen dieser speziellen Branche zu entwickeln. Das Ergebnis dieser Bestrebungen befindet sich im Anhang dieser Arbeit.
7 Betriebliches Vorschlagswesen

Bild 67: Erfolgspotentiale der Organisation

Unter diesem Gesichtspunkt leitet sich eine Fragestellung ab:

Wie soll das BVW in einem kleinen oder mittleren Unternehmen unter der Bedingung des Einsatzes knapper Ressourcen organisiert werden, um die Innovationskraft aller Mitarbeiter effizient zu generieren und umzusetzen?

Die Mitarbeitermotivation zur Beteiligung am BVW (siehe Bild 68) kann unterschiedlich gefördert werden. Hier lassen sich unter anderem anführen: [158]

- Schulungen und Informationsveranstaltungen
- Anreizsysteme
- Qualitätszirkel
- Ideenmanagement/betriebliches Vorschlagswesen

![Formen der Beteiligung am BVW](image-url)
Das Wissen der Mitarbeiter bildet das Know-how eines Unternehmens. [159], [160] Jeder Mitarbeiter wird für seine Arbeitsleistung mit entsprechenden monetären Anreizen entlohnt. Allerdings ist anzunehmen, dass dem Mitarbeiter weitaus mehr Wissen zur Verfügung steht, als er für seine Entlohnung offeriert. Wissen lässt sich kategorisieren in:

- **implizites Wissen** - ist schwer kommunizierbar, kaum formalisierbar und stillschweigend bei den Mitarbeitern vorhanden
- **explizites Wissen** - ist formalisierbar, zeitlich stabil und steht anderen Mitarbeitern gegenüber zur Verfügung

Das BVW ist eine organisatorische Einrichtung innerhalb eines Unternehmens, das die Förderung, Begutachtung, Anerkennung und Umsetzung von Verbesserungsvorschlägen der Mitarbeiter zum Ziel hat.

Das prinzipielle Grundelement des BVW ist der **Verbesserungsvorschlag (VV)**. Bei einem VV handelt es sich um eine Idee, die dem Unternehmen einen Nutzen stiften soll, und einen Lösungsweg, wie sich die Idee umsetzen lässt. Der VV soll der:

- Vereinfachung und Erleichterung von Arbeitsabläufen (organisatorisch),
- Qualitätssteigerung,
- Unfallvermeidung,
- Steigerung der Rentabilität durch Kosteneinsparung und
- Förderung der Zusammenarbeit der Mitarbeiter
dienen.

Nach Steih [161] sind VV einzuteilen in Vorschläge mit:

- **operativem Charakter**

- **strategischem Charakter**

Im Kern des Vorschlagswesens geht es darum, die Mitarbeiter so zu motivieren, dass sie kontinuierlich über Verbesserungen nachdenken, um so dem Unternehmen spezifische Informationen mitteilen zu können. Damit besitzt der Mitarbeiter die Möglichkeit, sich aktiv einzeln oder in Gruppen am Betriebsgeschehen zu beteiligen.
Das Bild 69 zeigt die allgemeine Grundstruktur des BVW mit seinen Organen (BVW-Beauftragter, Gutachter und Bewertungskommission). [162]

Der BVW-Beauftragte nimmt eine zentrale Rolle ein, die er haupt- oder nebenamtlich wahrnimmt. Er ist für die Einhaltung der gesetzlichen und vertraglichen Bestimmungen, die in der Betriebsvereinbarung festgelegt sind, verantwortlich.

Aufgabe des BVW-Beauftragten ist die Sammlung von VV, sie zu bearbeiten und einer Entscheidung zuzuführen, sodass möglichst viele und realisierbare VV schnell im Unternehmen verwirklicht und genutzt werden können. [163]

Bild 69: Organe des BVW

Daneben bildet die Arbeit der Gutachter die Basis für die Entscheidungsfindung. Nur sie besitzen die fachliche Qualifikation, Einsparungspotentiale sowie die Kosten zur Einführung zu berechnen bzw. zu schätzen.

Zu unterscheiden sind Prämien mit:

- **berechenbarem Nutzenzuwachs**
 Für VV mit berechenbarem Nutzenzuwachs stehen dem einreichenden Mitarbeiter (Einreicher) festgelegte Prozentsätze der Nettoeinsparung für das erste Jahr nach Einführung des Vorschlags zu.

- **nicht berechenbarem Nutzenzuwachs**

9 Nettoeinsparung = Einsparung – Kosten zur Einführung des VV
7.1 Geschichtliche Entwicklung des betrieblichen Vorschlagswesens

Wie aus Tabelle 13 ersichtlich, waren 1999 beim Deutschen Institut für Betriebswirtschaft e.V. (DIB) 441 Unternehmen/Behörden in Deutschland registriert. Das DIB beschäftigt sich unter anderem mit dem BVW in deutschen Unternehmen.

Tabelle 13: Statistik zum BVW

<table>
<thead>
<tr>
<th>Jahr</th>
<th>1997</th>
<th>1998</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Unternehmen/Behörden</td>
<td>361</td>
<td>409</td>
<td>441</td>
</tr>
<tr>
<td>Beschäftigte in Mio.</td>
<td>2,7</td>
<td>2,6</td>
<td>2,9</td>
</tr>
<tr>
<td>Beteiligungsquote pro 100 Mitarbeiter in %</td>
<td>35,7</td>
<td>40</td>
<td>39,5</td>
</tr>
<tr>
<td>Anzahl der eingereichten VV</td>
<td>970.329</td>
<td>1.064.039</td>
<td>1.147.000</td>
</tr>
<tr>
<td>Summe der Prämien in Mio. DM</td>
<td>287</td>
<td>303</td>
<td>330</td>
</tr>
<tr>
<td>Durchschnitt je prämiertem VV in DM</td>
<td>558</td>
<td>518</td>
<td>419</td>
</tr>
<tr>
<td>Höchstprämie in DM</td>
<td>501.900</td>
<td>750.000</td>
<td>562.860</td>
</tr>
<tr>
<td>Einsparung aus erreichbaren und geschätzten VV im ersten Jahr in Mio. DM</td>
<td>1.756</td>
<td>1.921</td>
<td>1.870</td>
</tr>
</tbody>
</table>

7.2 Untersuchung

7.2.1 Grundgesamtheit und Rücklaufquote

Die Studie begründet sich auf die Vergleichbarkeit/Konformität der Unternehmen (siehe Tabelle 14). Sie gehören beide zur metallverarbeitenden Industrie, befinden sich in der gleichen Region, gehören der Größe nach zu mittleren Unternehmen und die Mitarbeiter stammen größtenteils aus dem gleichen Bundesland. Aufgrund dessen und einer vergleichbaren Mitarbeiterstruktur bezüglich Anzahl, dem Verhältnis Frauen/Männer und Alter wird eine Homogenität der Mitarbeiter beider Firmen angenommen, sodass eine Vergleichbarkeit gegeben ist.

<table>
<thead>
<tr>
<th>Unternehmen A</th>
<th>Unternehmen B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenständiges Unternehmen</td>
<td>Tochtergesellschaft eines größeren Unternehmens</td>
</tr>
<tr>
<td>Metallverarbeitende Industrie – produziert Radsatzlagergehäuse für Schienenfahrzeuge, Fahrzeugteile für Nutzfahrzeuge und Getriebegeräte für Windkraftanlagen</td>
<td>Metallverarbeitende Industrie – fertigt Armaturenteile und Zubehör für Sanitäranlagen</td>
</tr>
<tr>
<td>Mitarbeiterzahl: ca. 200</td>
<td>Mitarbeiterzahl: ca. 190</td>
</tr>
</tbody>
</table>

In einem Punkt wurde bewusst auf eine Konformität/Homogenität verzichtet. Für den Vergleich wurden nicht zwei Unternehmen mit vergleichbarem „Entwicklungsstand“ des
BVW gewählt, um die Auswirkungen einer Implementierung des zu erarbeitenden Modells zu testen.
Da das traditionelle BVW primär auf die Mitarbeiter abzielt und nicht auf die Führungskräfte, wurden bei der Definition der Grundgesamtheit (Population) die Führungskräfte vernachlässigt. Des Weiteren hat sich die Untersuchung mittels Fragebogen auf den produktiven Sektor der Unternehmungen beschränkt, da in beiden Unternehmen ca. 80% der VV aus diesem Sektor stammen. Hier existiert somit das größte Potential an Einsparungsmöglichkeiten.
Die Grundgesamtheit definiert sich also aus den Produktionsbereichen beider Unternehmen. Das Unternehmen A besaß zum Zeitpunkt der Erhebung 143 Mitarbeiter in der Produktionsabteilung, Unternehmen B 147, wobei alle Mitarbeiter aus den genannten Bereichen an der Befragung beteiligt waren und somit eine 100%ige Rücklaufquote für die definierte Grundgesamtheit erreicht werden konnte. Die angegebenen Prozentpunkte der Auswertung sind nicht vorbehaltlos zu betrachten. Da die Grundgesamtheit aus sehr geringen Zahlen besteht, besitzen einzelne Akteure eine relativ hohe Gewichtung. Konkrete Prozentpunkte werden daher nicht weiter betrachtet. Maßgeblich ist der Vergleich der Merkmalsausprägungen.

7.2.2 Kennzahlenvergleich

Bild 70: Vergleich Unternehmen A und B
In Bild 71 ist der Vergleich der Beteiligungsquote deutlich sichtbar. Beteiligten sich lediglich 3% der Mitarbeiter im Unternehmen A am BVW, so sind es 48% im Unternehmen B. Welche Ursachen der große Unterschied zwischen den Beteiligungsquoten in den einzelnen Unternehmen hat, wird in einem späteren Kapitel noch genauer analysiert.

Bild 71: Kennzahlenvergleich

![Diagramm](attachment:Diagramm.png)

Die Durchführungsquote des Unternehmens A beträgt 100%. Möglicherweise werden nur VV eingereicht, die aus Sicht der Mitarbeiter garantiert von der Unternehmensleitung umgesetzt werden. Wogegen die Durchführungsquote des Unternehmens B 63% beträgt.

Die Kosten-Nutzen-Relation ist der Quotient aus ausgezahlter Gesamtprämie und Gesamt-Nettoeinsparung mal 100%. Zu erkennen ist der Anteil der Prämie an der Nettoeinsparung. Im Unternehmen A liegt sie geringfügig höher als in Unternehmen B.

7.2.3 Organisationsstrukturanalyse

Die Analyse der Organisationsstrukturen des BVW in den ausgewählten Unternehmen (siehe Bild 72) bildete die Basis für alle weiteren Untersuchungen. [171]
Bild 72: **BVW-Ablauforganisation**

Ablauforganisation des BVW im Unternehmen A:

- 115 -
Ablauforganisation des BVW im Unternehmen B:
Die Ablauforganisation im Unternehmen B ist so aufgebaut, dass ein Mitarbeiter seinen VV bei dem BVW-Beauftragten einreicht, der dann den Eingang bestätigt und eine Datenerfassung für die weitere Bearbeitung und Verwaltung vornimmt.

Fazit:
Beim Vergleich der Organisationsstrukturen beider Unternehmen fallen folgende Unterschiede im Ablauf des BVW im Besonderen auf:

- Im Unternehmen A entscheidet der Geschäftsführer in Abstimmung mit dem BVW-Beauftragten über den VV und die mögliche Prämienhöhe.
- Im Unternehmen B trifft diese Entscheidung die Bewertungskommission.

Sind Abweichungen von der allgemeinen Grundstruktur des BVW erkennbar. Im konkreten Fall wird die Bewertungskommission durch den Geschäftsführer ersetzt. Der Geschäftsführer entscheidet in Abstimmung mit dem BVW-Beauftragten über die Anerkennung des VV und über die Prämienhöhe.
Dagegen ist festzuhalten, dass sich die allgemeine Grundstruktur des BVW in der BVW-Ablauforganisation im Unternehmen B widerspiegelt.

7.2.4 Verhaltensanalyse

Bevor die Ergebnisse der Verhaltensanalyse der Mitarbeiter bezüglich ihrer Einstellung und Meinung zum betrieblichen Vorschlagswesen dargestellt werden, wird sich kurz dem theoretischen Hintergrund der Befragung widmet.
Eine detaillierte Analyse der Ergebnisse erfordert eine umfangreiche Untersuchung. Im Rahmen dieser Arbeit werden nur deutliche Trends der Fragebogenergebnisse aufgezeigt und interpretiert.

7.2.4.1 Befragung
Um die Einstellung der Mitarbeiter in den jeweiligen Unternehmen zum BVW zu erfahren, war eine Befragung bezüglich des Ist-Zustandes notwendig. Eine Befragung kann
Betriebliches Vorschlagswesen telefonisch, mündlich oder schriftlich erfolgen. Ausgewählt wurde die schriftliche Befragung mittels eines standardisierten Fragebogens aus folgenden Gründen:

Aber auch Nachteile der schriftlichen Befragung sollen erörtert werden. Besondere Nachteile können sein: [174]

Durchführung der Befragung

Aufbau des Fragebogens

Der zweite Teil des Fragebogens soll Antworten zur Einstellung der Mitarbeiter zum BVW geben. Der zu untersuchende Gegenstand ist die Beteiligungszahl. Warum beteiligen sich Mitarbeiter durch die Einreichung von VV am BVW? Gefragt wird nach der

Motivation. Sind es eher intrinsische oder extrinsische Motive, die eine Beteiligung des Mitarbeiters hervorrufen? Die Antwortalternativen der Frage 6 befassen sich mit dem Motivationsaspekt der Mitarbeiter, siehe Bild 73. Die gesamten Antwortalternativen des Fragebogens sind im Anhang ersichtlich.

Frage 6: Motivationsaspekt

<table>
<thead>
<tr>
<th>Misstands-, Fehlerbehebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreativität</td>
</tr>
<tr>
<td>Aktivität</td>
</tr>
<tr>
<td>Persönliche Anerkennung</td>
</tr>
<tr>
<td>Monetäre Prämie</td>
</tr>
<tr>
<td>Sonstiges</td>
</tr>
</tbody>
</table>

Bild 73: Frage 6 Motivationsaspekt

Die zweite Überlegung geht der Frage nach, warum Mitarbeiter sich nicht oder nur im geringen Maße am BVW beteiligen. Unter Umständen liegt eine Motivation zur Beteiligung am BVW vor, aber es können auch Gründe vorliegen, die eine Beteiligung verhindern. Diese Gründe werden im Folgenden als Motivationsbarrieren bezeichnet. Sie definieren sich nicht als „Nichtvorhandensein von Motivation“, sondern hemmen den Entschluss, sich durch VV am BVW zu beteiligen. Darauf zielt Frage 7 ab (siehe Bild 74).

Frage 7: Motivationshemmnis

<table>
<thead>
<tr>
<th>Gleichgültigkeit der Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Einstellung des Vorgesetzten</td>
</tr>
<tr>
<td>Zeitaspekt zu gering</td>
</tr>
<tr>
<td>Keine Unterstützung des BVW durch die Unternehmensleitung</td>
</tr>
<tr>
<td>Allgemeiner Änderungswiderstand der Mitarbeiter</td>
</tr>
<tr>
<td>Spannungen bei Vorschlägen, die einen fremden Arbeitsbereich betreffen</td>
</tr>
<tr>
<td>Zu geringe monetäre Anreize</td>
</tr>
<tr>
<td>Fehlende Transparenz des Prämiensystems</td>
</tr>
<tr>
<td>Angst vor Arbeitsplatzverlust</td>
</tr>
<tr>
<td>Blamagefurcht</td>
</tr>
<tr>
<td>Sonstiges</td>
</tr>
</tbody>
</table>

Bild 74: Frage 7 Motivationshemmnis

11 Bei *extrinsicher* Motivation dient die Aufgabenerfüllung einem Zweck, z.B. dem des monetären Anreizes in Form einer Prämie. Liegt dagegen *intrinsische* Motivation vor, so liegt der Anreiz in der Erfüllung der Aufgabe selbst, beispielsweise kann so der Mitarbeiter seine Kreativität „anwenden“.

- 118 -
Die Motivation und die Motivationshemmnisse geben noch keine Aussage darüber, was aus Sicht der Mitarbeiter uneffektiv am BVW ist. Der Mitarbeiter wird daher befragt, was er am BVW aus seiner Sicht verbessern würde (siehe Bild 75). Seine angegebenen VV bezüglich des BVW im eigenen Unternehmen lassen Rückschlüsse auf die Optimierung des Systems zu.

<table>
<thead>
<tr>
<th>Frage 8: Verbesserungsvorschläge der Mitarbeiter bezüglich des BVW ihres Unternehmens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchlaufzeit der VV</td>
</tr>
<tr>
<td>Begutachtung der VV</td>
</tr>
<tr>
<td>Zwischenbescheid</td>
</tr>
<tr>
<td>ablehnung der VV</td>
</tr>
<tr>
<td>Finanzielle Prämierung</td>
</tr>
<tr>
<td>Fehlende Transparenz des Prämienystems</td>
</tr>
<tr>
<td>Status quo Orientierung der Mitarbeiter</td>
</tr>
<tr>
<td>Sonstiges</td>
</tr>
</tbody>
</table>

Bild 75: Frage 8 VV für BVW im eigenen Unternehmen

Gütekriterien

Die Qualität der Daten ist abhängig von der Qualität des Messvorganges und einer, wie im Rahmen dieser Studie erreichten, möglichst 100%igen Beteiligung der Grundgesamtheit. Der Messvorgang wird durch drei verschiedene Gütekriterien bewertet:

1. **Objektivität**

Das Messkriterium Objektivität gibt die Unabhängigkeit der Messergebnisse vom Untersuchungsleiter an. Dies wird in drei Arten unterteilt:

- Durchführungsobjektivität
- Auswertungsobjektivität
- Interpretationsobjektivität

Während der Durchführung der Untersuchung ist eine geringe Beeinflussung der befragten Person durch den Testleiter anzustreben, da nur so sichergestellt werden kann, dass die Auskunftsperson frei und unabhängig die Alternativen des Testes auswählt.

Die Auswertungsobjektivität ist dann gegeben, wenn der Testleiter so wenig Freiheitsgrade wie nur möglich bei der Auswertung der Testergebnisse besitzt. Dies ist bei einem standardisierten Fragebogen gegeben. Der in dieser Arbeit verwendete Fragebogen ist zu einem hohen Grade standardisiert. Ausnahme bilden die Antwortalternativen „Sonstiges“. Hier besaßen die Befragten die Möglichkeit, selbst individuell Antworten schriftlich zu vermerken. Allerdings wurden die Antworten nicht weiter statistisch berücksichtigt, da nur eine sehr geringe Anzahl von Mitarbeitern diese Möglichkeit nutzte.

Die Interpretationsobjektivität ist dann vorhanden, wenn bei der Interpretation der Ergebnisse der Versuchsleiter so wenig wie möglich Freiheitsgrade besitzt. Hierin liegen
hohe Fehlerpotentiale, sodass versucht wird, die Interpretationen des Fragebogens auf ein Minimum zu beschränken.

2. Reliabilität

3. Validität
Mit Validität ist die Gültigkeit eines Testverfahrens gemeint. Der Grad der Validität beschreibt die Güte des Messinstrumentes, inwieweit das gemessen wird, was auch gemessen werden soll. Eine rein objektive Formulierung einer Frage/Answer ist nicht möglich. Es wird mit der Sprache, sobald sie benutzt wird, immer eine individuelle Assoziation bei dem Empfänger hervorgerufen. Allerdings sollte sie möglichst gering ausfallen. Informationsverzerrungen liegen in der Formulierung der Antwortalternativen.

7.2.4.2 Ergebnisse der Verhaltensanalyse
Ziel war es, Ursachen für die unterschiedlichen Beteiligungsquoten der Mitarbeiter in den Unternehmen zu finden. Dafür wurden im Besonderen die

- **Motivationsaspekte**
- **Motivationshemmnisse**

... der Mitarbeiter analysiert.

In einem ersten Schritt erfolgte die Analyse der Altersstruktur der Mitarbeiter (siehe Bild 76) in den einzelnen Unternehmen.

Bild 76: Altersstruktur
Auffällig dabei war der Unterschied der über 50-jährigen Mitarbeiter. Im Unternehmen A sind 22% der Mitarbeiter über 50 Jahre alt und im Unternehmen B nur 5%. Dies hängt unter anderem damit zusammen, dass das Unternehmen A bereits länger an seinem derzeitigen Standort existiert, als das Unternehmen B, welches erst Anfang der 90er Jahre aufgebaut wurde.

Weiterführend sollten Antworten auf folgende Fragen gefunden werden:

- Ist Ihnen das BVW Ihres Unternehmens bekannt?
- Haben Sie schon einmal einen VV in Ihrem Unternehmen eingereicht?

Wie in Bild 77 ersichtlich, ist das BVW im Unternehmen A bei 52% der Mitarbeiter bekannt. Eine Nutzung der Ideenpotentiale ist so nur bei maximal 52% der Mitarbeiter möglich. Im Unternehmen B wissen dagegen 95% der Befragten, dass ein BVW in ihrem Unternehmen existiert.

![Bild 77: Bekanntheits- und Einreichungsgrad der Mitarbeiter 1999](image)

Der Bekanntheitsgrad des BVW steht in statistischer Korrespondenz mit der Einreichung von VV. Aus Bild 77 ist weiterhin zu entnehmen, dass nur 26% der Mitarbeiter im Unternehmen A bereits einen VV eingereicht haben. Hier existieren große Potentiale, die bei Aktivierung der Mitarbeiterbeteiligung generiert werden können. Im Unternehmen B haben sich dagegen in der Vergangenheit schon 79% der Mitarbeiter am BVW beteiligt.

Die nächste Antwortkategorie beschreibt den Motivationsaspekt des Mitarbeiters bezogen auf die Einreichung von VV (siehe Bild 78). Die Antwortalternativen, wobei auch Mehrfachnennungen möglich waren, sind in extrinsische und intrinsische Motive unterteilt:

- **extrinsische Motive:** - Missstands- und Fehlerbehebung
 - Monetäre Prämie
- **intrinsische Motive:** - Kreativität
 - Aktivität

Unabhängig vom Unternehmen ist die *Missstands- und Fehlerbehebung* bei den Mitarbeitern der mit Abstand am häufigsten genannte Grund, einen VV einzureichen. Hieraus
ist das Bedürfnis seitens der Mitarbeiter ersichtlich, den Arbeitsablauf „besser“ zu gestalten. [178]

Bild 78: Motivationsaspekte der Mitarbeiter

Die Beseitigung von Ineffizienzen obliegt folglich nicht nur der Unternehmensleitung. Als weitere Motivationsgründe spielen Kreativität und Aktivität eine übergeordnete Rolle bei den Befragten. Mitarbeiter möchten sich gestalterisch am Betriebsgeschehen beteiligen. Was ist aber mit der Prämie als Anreiz?

Die Studie ergab, dass die monetäre Prämierung als Anreiz für eine aktive Beteiligung am BVW nicht ausschlaggebend ist. Im Unternehmen A wird die Prämierung nur zu 38% als Motivator betrachtet, im Unternehmen B sind es 50%. Dies führt zu der Erkenntnis, dass ein funktionierendes Prämiensystem eine nicht unbedeutende Relevanz für eine hohe Beteiligung am BVW besitzt, aber die Motive Missstands- und Fehlerbehebung, Kreativität und Aktivität (letzteres Motiv nur im Unternehmen B) im speziellen Fall von den befragten Mitarbeitern höher gewichtet werden. Unter Umständen liegt eine Motivation zur Beteiligung am BVW vor, aber es gibt Gründe, die diese auch verhindern. Diese Gründe werden im Folgenden als Motivationshemmnisse bezeichnet. Folgende weitere Frage wurde den Mitarbeitern gestellt:

Bild 79: Motivationshemmnisse der Mitarbeiter
Das Bild 79 zeigt die am häufigsten gewählten Antwortalternativen. Die Alternative Gleichgültigkeit wurde von den Mitarbeitern beider Unternehmen im Verhältnis zu anderen Alternativen am häufigsten gewählt.

Ein weiterer Hemmnisgrund, der eine Ideengenerierung im Unternehmen A erschwert, ist die Blamagefurcht der Mitarbeiter. Die subjektiv empfundene fehlende Unterstützung des BVW durch die Unternehmensleitung konnte ebenfalls als Motivationshemmnis ermittelt werden. Mit anderen Worten, der Mitarbeiter fühlt sich nicht genügend informiert und erwartet Aktivitäten der Unternehmensleitung, die das BVW unterstützen.

Fazit:
- Bekanntheitsgrad des BVW ist im Unternehmen A geringer als im Unternehmen B
- primäre Motivation der Mitarbeiter einen VV einzureichen ist in beiden Unternehmen die Behebung von Missständen und Fehlern
- Aktivität und Kreativität sind weitere relevante Motivationsaspekte in den untersuchten Unternehmen, jedoch mit unterschiedlicher Gewichtung in Bezug auf die monetäre Prämie
- monetäre Prämie als Anreiz ist in beiden Unternehmen nicht zu vernachlässigen, aber nicht entscheidend (!)
- Gleichgültigkeit der Mitarbeiter sowie Blamagefurcht sind ausschlaggebende Motivationshemmnisse in den genannten Unternehmen
- Mitarbeiter beider Unternehmen bemängeln die fehlende Unterstützung des BVW durch die Unternehmensleitung
- negative Einstellung des Vorgesetzten wird nur im Unternehmen A als nennenswertes Motivationshemmnis empfunden

7.3 Generierung eines innovativen betrieblichen Vorschlagswesens

Die Organisations- und Verhaltensanalyse in den untersuchten Unternehmen zielt auf folgende Fragestellungen ab:

1. Wie lassen sich die aufgezeigten Ergebnisse der Untersuchung interpretieren?
2. Welche Maßnahmen sind zu ergreifen, um die Mitarbeiterbeteiligung am BVW zu erhöhen?

Um eine Systematik in die Auswertung der Analyse zu bekommen und daraus einen Maßnahmekatalog zum Abbau der Barrieren zu generieren, werden ausgewählte Merkmalsausprägungen der untersuchten Unternehmen den vier Kategorien der Hemmnisbarrieren zugewiesen (siehe Bild 80).
Bild 80: Hemmnisbarrieren seitens der Mitarbeiter

- Informationsbarriere
 Der Mitarbeiter besitzt im Fall der „Informationsbarriere“ ungenügende Informationen bezüglich des BVW oder seines Aufgabenbereiches (Nicht-Wissen). Ihm sind die Ziele und Aufgaben des BVW nur ungenügend bekannt.

- Risikobarriere

- Fähigkeitsbarriere

- Willensbarriere
7.3.1 Maßnahmekatalog zum Abbau von Hemmnisbarrieren

Hemmnisbarrieren richten sich gegen jegliche Art der Innovation und bilden keine positiven Rahmenbedingungen für ein funktionierendes BVW, gleich welcher Art. Um einen günstigen „Nährboden“ für VV zu schaffen, müssen mögliche Ursachen für die Barrieren (siehe Bild 81) erkannt und überwunden werden.

Hemmnisbarrieren	**Ursachen**
- Informationsbarriere | - Ungenügende Informationen
- RisikobARRIERE | - Angst vor Arbeitsplatzverlust
- | - Angst vor kürzeren Vorgabezeiten
- | - Angst vor Mobbing
- | - Blamagefurcht
- Fähigkeitsbarriere | - Mangelfahre Bereitschaft zur Problemberkenntung
- | - Artikulationsschwierigkeiten
- Willensbarriere | - Gleichgültigkeit
- | - fehlender persönlicher Nutzen
- | - zu hoher Arbeitsaufwand
- | - negative Erfahrungen in der Vergangenheit
- | - Ressentiments gegenüber dem Unternehmen

Bild 81: Kategorisierung der Hemmnisbarrieren und deren mögliche Ursachen

Mögliche Maßnahmen zum Abbau dieser Hemmnisbarrieren und damit zur Generierung von implizitem in explizites Wissen veranschaulicht das Bild 82 [179]

Bild 82: Maßnahmen zum Abbau von Hemmnisbarrieren
Informationsbarriere

Maßnahmen:

RisikobARRIERE

Maßnahmen:
Fähigkeitsbarriere

Eine unkritische Einstellung der Mitarbeiter gegenüber dem Arbeitsablauf ist eine denkbare Form der Fähigkeitsbarriere. Diese drückt sich in der *Gleichgültigkeit der Mitarbeiter* aus (Unternehmen A 51%). Die mangelhafte Bereitschaft zur Problemerkennung kann als Ursache für die *Gleichgültigkeit der Mitarbeiter* gesehen werden. Weiterhin ist die *Blamagefurcht* aufgrund eventueller Artikulationsschwierigkeiten seiten des Mitarbeiters Ausdruck einer Fähigkeitsbarriere.

Maßnahmen:

Willensbarriere

Die *fehlende Unterstützung* durch die Unternehmensleitung ist für 26% der Mitarbeiter im Unternehmen A und nur bei 19% im Unternehmen B ein Motivationshemmnis.

Maßnahmen:

Um der Willensbarriere zu begegnen, ist das BVW als Führungsinstrument einzusetzen. Beispielsweise könnte die Anzahl der Einreichungen von VV in die Bewertung/Beurteilung eines Mitarbeiters eingehen, sodass dies mögliche Beförderungen beeinflussen kann. Hierdurch ist es möglich, die Mitarbeiter zur verstärkten Mitarbeiterbeteiligung zu bewegen. Werden Vorgesetzte anhand der Summe der Einsparungen ihrer Abteilung pro Jahr gemessen, haben sie Beweggründe, ihre Mitarbeiter zur erhöhten Beteiligung am BVW zu motivieren.

12 VV beinhalten einen Problemlösungswege.
Zur Verringerung des „Nicht-Wollens“ kann auch ein Anreizsystem, in dem die Prämiierung als „fair“ empfunden wird, förderlich sein. Ein Prämienystem muss klar und verständlich für die Mitarbeiter sein.

Es ist des Weiteren darauf zu achten, dass bei der Realisierung von VV eine verständliche Begründung über die Höhe der Prämie erfolgt, sodass keine Missverständnisse und Unklarheiten auftauchen. Dies würde ansonsten eine allgemeine Skepsis der Mitarbeiter zum BVW fördern.

Das Anreizsystem kann darüber hinaus durch immaterielle Anreize (siehe Bild 83) ergänzt werden. Wie aus der Untersuchung ersichtlich, reicht ein Prämienystem allein nicht aus, um Mitarbeiter zur Einreichung von VV zu motivieren. [181]

Bild 83: Anreizsystem

Die große Bereitschaft der Mitarbeiter, Missstände und Fehler im Betriebsablauf zu korrigieren, kann durch ein positives Arbeitsklima unterstützt werden.

7.3.2 Vorgesetztenmodell

Die Vielzahl der genannten Maßnahmen zur Verringerung von Hemmnisbarrieren kann aber nicht einzeln eingesetzt werden, um einen Erfolg herbeizuführen. Es muss ein Rahmen erzeugt werden, der die einzelnen Maßnahmen koordiniert und zielgerichtet einsetzt. Ein mögliches Modell ist das sogenannte Vorgesetztenmodell (siehe Bild 84).

Bild 84: Das Vorgesetztenmodell

- Liegt ein abteilungsinterner VV vor?
- Ist der VV realisierbar?
- Übersteigt die geschätzte Mitarbeiterprämie nicht die vorgesehene Budgetgrenze?

13 Die Mitarbeiterprämie ergibt sich aus der Schätzung des Nettonutzens. Letzterer ist Ergebnis eines vom Vorgesetzten erstellten Gutachtens.
7.4 Ergebnisse nach Einführung des Vorgesetztenmodells

Besonders zu betonen ist der Informationsfluss, der den Mitarbeitern und Vorgesetzten die Bedeutung des BVW und die daraus resultierenden Effizienzgewinne für alle Mitarbeiter des Unternehmens verdeutlicht. Die Informations-, Risiko- und Willensbarrieren seitens der Mitarbeiter sind ohne größeren Aufwand reduzierbar, wobei der Erfolg bedeutsame Konsequenzen für die Nutzung von implizitem Wissen besitzt (siehe Bild 85). [182]

Bild 85: Wissenskreislauf

Das Vorgesetztenmodell ermöglicht eine flexiblere und zeitreduziertere Abwicklung von Vorschlägen als ein traditionelles BVW.
Ein entscheidendes Kriterium des Vorgesetztenmodells sind die unmittelbaren Vorgesetzten. Der Erfolg hängt maßgeblich von ihnen ab. Sind sie sich ihrer bedeutenden Rolle bewusst und können sie sich mit dem Unternehmen identifizieren, so werden sie nachhaltig ihre unmittelbaren Mitarbeiter beeinflussen können. Sind sie es aber nicht, so bleibt das Vorgesetztenmodell wirkungslos.

Eine nach der Einführung des „Vorgesetztenmodells“ seitens der Unternehmen durchgeführte Untersuchung ergab durchweg eine positive Resonanz. Durch entsprechende Schulungen durch den BVW-Beauftragten konnten die unmittelbaren Vorgesetzten für die Belange des BVW gewonnen werden. Speziell im Unternehmen A war der positive Effekt am stärksten ausgeprägt. Dieses Ergebnis war aber in dieser Form zu erwarten, da im Unternehmen B bereits ein BVW mit hohem Bekanntheitsgrad (siehe Bild 86) in die Organisationsstruktur implementiert war.

Bild 86: Befragungsergebnisse 2001
Wie in Bild 86 deutlich zu sehen ist, konnte nach zwei Jahren bereits eine Steigerung des Bekanntheitsgrades des BVW um 22% (!) erreicht werden.

Fazit:

Die wesentlichen Vorteile des Vorgesetztenmodells sind:

- kürzere Bearbeitungszeiten bei Einhaltung unternehmensspezifischer Rahmenbedingungen durch dezentrale Bearbeitung der eingereichten VV
- Vorgesetzter kann durch Mitarbeitermotivation die Beteiligung am BVW erhöhen
- Vorgesetzter kann Besonderheiten am Arbeitsplatz berücksichtigen

Mit der Einführung des Vorgesetztenmodells wurde eine strukturentworfene Qualitäts-technik in den Unternehmen implementiert, welche sich erfolgreich im Dreieck Mensch, Technik und Qualität bewährt hat und zur Erfüllung von Normenkonformität beiträgt.
8 Schulung durch e-learning

Der rasante technologische Wandel in nahezu allen Bereichen stellt hohe Lern- und Weiterbildungsanforderungen an Mitarbeiter und Auszubildende einer Organisation. In der betrieblichen Bildung lässt sich heute eine Renaissance des Lernorts Arbeitsplatz beobachten. Viele Veröffentlichungen zu der Problematik e-learning weisen darauf hin, dass den neuen, interaktiven Lernmedien dabei eine wichtige Rolle zukommt. Ihre Bedeutung wird darin gesehen, dass sie auf die Unterstützung selbstorganisierten Lernens abzielen und daher am Arbeitsplatz, an dem Lehrer in der Regel nicht zur Verfügung stehen, Lernmöglichkeiten schaffen. [185], [186], [187]

8.1 Didaktische Grundlagen

8.1.1 Lernziele, Lernarten, Lernprozess

- individuelles Lernen
- soziales Lernen
- fachliches Lernen
- Gruppenlernen

Ferstl [192] beschreibt den Lernprozess in drei Phasen:

- Wissen erwerben
- Wissen vertiefen
- Wissen anwenden in realen oder realitätsnahen Situationen

8.1.2 Lernerfolg

8.1.3 Besonderheiten des betrieblichen Lernens

8.1.4 Neue Anforderungen an das betriebliche Lernen

Die Gründe für betriebliche Aus- und Weiterbildung sind vielfältig und unterliegen einem fortfahrenden Wandel durch neue Anforderungen. [197], [198]

Mögliche Gründe für Weiterbildungsmaßnahmen von Mitarbeitern:

- erhöhte Anforderungen an die Tätigkeit im Unternehmen
- Unternehmen sind zur Weiterbildung/Schulung der Mitarbeiter normativ gezwungen
- Anlass zur Weiterbildung sind Schwierigkeiten, auf dem Arbeitsmarkt entsprechende Fachkräfte zu finden

Die Ausfallzeiten und Reisekosten treiben die Kosten der Weiterbildung in die Höhe, vor allem in KMU werden Schulungsmaßnahmen aus "wirtschaftlichen Gründen" oft in den Hintergrund gerückt. Es ist offensichtlich, dass die zeitliche Entlastung der Mitarbeiter für die Weiterbildung, die mit einem Herauslösen aus dem Arbeitsprozess verbunden ist, so gering wie möglich gehalten werden soll, um Ausfallzeiten zu minimieren. Darüberhinaus sollte die Bereitschaft der Mitarbeiter zu lernen (Lernmotivation) und ihre Fähigkeit zu lernen (Lernvermögen) gefördert werden. Zwar sind die meisten Unternehmen ausreichend mit z.T. multimediafähigen Computern ausgestattet, trotzdem ist Lernen am Arbeitsplatz in "unproduktiven Zeiten" zwar erwünscht, in der Praxis jedoch kaum anzutreffen. [199]

Lebenslanges Lernen und die Notwendigkeit, den Lernprozess in ein durch berufliche und familiäre Verpflichtungen stark eingeschränktes Zeitbudget zu integrieren, ermög-
licht das Distance Learning. Dadurch werden auch Zielgruppen angesprochen, die bis-
her von Weiterqualifizierung durch seminaristische Präsenzseminare ausgeschlossen
waren. Den Mitarbeitern wird vom Unternehmen freigestellt, ob sie privat oder innerhalb
der Arbeitszeit lernen, Zeitmanagement und Motivation sind hierbei als die kritischen Er-
folgsfaktoren für den Lernerfolg anzusehen. [200], [201]
Das Wissen wächst und wird immer komplexer, Lernen findet in allen Bereichen der Or-
gansisation statt. Gleichzeitig erfordern hoher Zeit- und Termindruck Informations-
systeme mit denen Wissen gezielt ausfindig gemacht und vermittelt werden kann.

8.2 Lernen mit neuen Medien

Unter dem Stichwort „neue Medien“ ist der Einsatz von Multimedia-Komponenten, d.h.
die gleichzeitige und kombinierte Anwendung von Text, Ton, Grafik, bewegten Animati-
onen und Videosequenzen zu verstehen. [202] Es gibt zahlreiche artverwandte Be-
giffe, die das Lernen mit dem Computer beschreiben, wobei in der Literatur der CBT-
Begriff (Computer Based Training) dominiert und in dieser Arbeit auch Basis für alle wei-
teren Betrachtungen ist.
Pfeifer [203] und andere führen neben CBT mit CUL (Computerunterstütztes Lernen),
CUU (Computerunterstützter Unterricht), CAL (Computer Assisted Learning), CAI
(Computer Assisted Instruction) weitere Synonyme auf.
Neue Medientechnologien ermöglichen eine zunehmend flexiblere und individuelle Ges-
taltung von Informations- und Lernprozessen. Im Folgenden wird zusammenfassend für
alle Technologien, die das Lernen unterstützen, der Begriff e-Learning verwendet.
Wurden früher überwiegend IT-Themen (z.B. Softwarebeschreibung) geschult, so wer-
den nun auch immer mehr Nicht-IT-Themen wie Qualitäts-, Umwelt- und Arbeitsschutz-/Sicherheitsmanagement über e-Learning vermittelt. Unternehmen, die sich für diese moderne Art des Lernens entschieden haben, sind in vielen Branchen zu finden. [204]

8.2.1 Computer Based Training (CBT)

Die CBT-Anwendung ermöglicht es, komplexe Sachverhalte und Bewegungsabläufe mit
geeigneten Mitteln darzustellen und zu kommentieren. Zur Verfügung stehen Text, Bild,
Ton sowie Videos und 2D-/3D-Animationen.
Die Abläufe können so zerlegt werden, dass sie für den Lernenden greifbar und
verständlich werden. Der Lernende hat dabei die Möglichkeit, Darstellungen oder
Sachverhalte, welche er nicht oder nur teilweise verstanden hat, beliebig oft zu
wiederholen. Es können zusätzliche, vertiefende Informationen hinzugezogen werden.
Da der Lernende das Programm in Form von Dialogen durcharbeitet, wird er interaktiv in
den Lernprozess einbezogen. Geschickte Aufgaben und Fragestellungen unterstützen
ihn bei seinen Schlussfolgerungen.
In der heutigen Zeit ist die private und berufliche Bildung ein fortfahrender Prozess.
Marktentwicklungen, veränderte Regelungen und technologischer Fortschritt erfordern
eine permanente Qualifikation. [205] Hohe Standards in der Weiterbildung sind Grund-
voraussetzung für die Wettbewerbsfähigkeit von Unternehmen.
CBT-Programme sind ein möglicher Ansatz zur Lösung der Mitarbeiterqualifizierung
(siehe Bild 88).

- 135 -
Bild 88: Mitarbeiterschulungen

Nicht nur wie im Kapitel 7 „Betriebliches Vorschlagswesen“ bereits angedeutet, besteht auch seitens verschiedener geltender Normen ein Bedarf an Schulungen der Mitarbeiter. Z.B. fordert die DIN EN ISO 9001:2000 von der Organisation in Abschnitt 6.2.2 – Fähigkeit, Bewusstsein und Schulung:

„Die Organisation muss die notwendigen Fähigkeiten des Personals, das die Produktqualität beeinflussende Tätigkeiten ausübt, ermitteln und zur Deckung dieses Bedarfs für Schulung sorgen“

CBT ist eine neue Form der medienunterstützten, interaktiven Aus- und Weiterbildung zur Vermittlung zielgerichteter Sachverhalte sowie Erfahrungs- und Umgangswissen, welches in Schulungszentren, Lernstudios, am Arbeitsplatz und auf dem Home PC zur Verfügung steht. Selbständiges Lernen ohne Anleitung von außen ist das Ziel von CBT-Anwendungen, was das Lernen am Arbeitsplatz in unproduktiven Zeiten ermöglicht. Dies kann durch die Einrichtung von Lernkonten organisatorisch unterstützt werden.

[206]

8.3 Zielstellung für die Entwicklung eines CBT-Programmes

Unternehmen werden gegenwärtig insbesondere aus der Sicht der Wettbewerbskonstellationen und des wachsenden Kostendruckes immer stärker gezwungen, ihre Leistungen zu sehr knapp kalkulierten Preisen anzubieten. Diesen Forderungen kann ein Unternehmen nur gerecht werden, wenn es neuartige Techniken im verstärkten Maße einsetzt, Bestehendes optimal nutzt oder Abstriche an bisher ausgeführten Tätigkeiten vornimmt. Um den Anforderungen und damit der Wettbewerbsfähigkeit der Unter-

8.4 Aufbau

Übungs- und Testsysteme konzentrieren sich auf das Training von Gedächtnisfähigkeiten und Faktenwissen. Das Wissen wird eingeübt und gefestigt, indem der Prozess Übung-Antwort–Bewertung in iterativen Schleifen durchlaufen wird. [207]

Simulationssysteme dienen zur Darstellung komplexer Systembeziehungen und Zusammenhänge bei Prozessen, die nicht direkt zugänglich sind oder deren reales Ausprobieren enorme Kosten oder schwerwiegende Folgen verursachen würden. Sie ermöglichen das explorative Lernen und das Training von Problemlösungsaktivitäten, indem das erlernte Faktenwissen gleich ausprobiert werden kann. Einsatzgebiete findet man in der Simulation technischer Systeme, bei Flug- und Fahrsimulatoren. [208]

Das CBT–Programm ist seitenorientiert aufgebaut. Die Seiten- und Ereignissteuerung erfolgt über Button.

Bild 89: **Orientierungspfad in der CBT-Anwendung**

In einem weiteren Modul befindet sich das Lexikon (siehe Bild 90) mit alphabetisch geordneten Begriffen bzw. deren Beschreibung.

Bild 90: **Ausschnitt aus dem Lexikon im CBT-Programm**
Schulung durch e-learning

Zur Überprüfung des Gelernten kann der Nutzer der CBT-Anwendung, Testfragen (siehe Bild 91) bearbeiten, wobei ihm angezeigt wird, ob die Frage richtig beantwortet wurde (siehe Bild 92) oder falsch.

Bild 91: Beispiel einer Testfrage

Bild 92: Anzeige für richtige Beantwortung der Frage
Wesentliche Kriterien bei der Entwicklung der CBT-Anwendung sind in der folgenden Checkliste aufgeführt:

Technik
- Ist eine leichte Installation möglich?
- Sind die Programme absturzsicher?

Benutzerfreundlichkeit
- Einheitliche Benutzeroberfläche vorhanden?
- Bedienung leicht und intuitiv?
- Hilfefunktion jederzeit verfügbar?

Gestaltung
- Übersichtliche Präsentation der Informationen?
- Schriftart deutlich und gut lesbar?
- Qualität der Bilder, Videosequenzen und Audio-Ton
- Ist das Programm mehr als eine »Blättermaschine«?
- Findet eine Wissensüberprüfung während des Kurses statt?
- Sind die Fragen verständlich formuliert?

Inhalte
- Ist die Ansprache zielgruppengerecht?
- Macht das Programm neugierig?

8.5 Kostenarten

Schoop und Glowalla [210] nennen neben den Beschaffungs- und Entwicklungskosten die Aufwendungen für den Aufbau und Erhalt der Lerninfrastruktur als die Haupteinflussfaktoren auf die Gesamtkosten.

8.5.1 Anschaffungskosten

Die Abschreibung der Anschaffungskosten hat kalkulatorisch über die Lebensdauer zu erfolgen. Wird die Infrastruktur nicht ausschließlich zu Schulungszwecken genutzt, dürfen nur die anteilig auf die Schulung entfallenden Kosten angesetzt werden.

8.5.2 Hardwarekosten

Die Grundvoraussetzung für e-Learning-Anwendung sind fähige Hardware- und Softwarekomponenten. Eine Aufrüstung hin zu Multimedia-PCs ist zumeist unumgänglich, da Büro-PCs in der Regel nicht für anspruchsvollere Multimedialuwendungen ausgelegt sind. Dazu ist die Anschaffung von Lautsprechern, Kopfhörern, Audio- und Grafikkarten für jeden Endanwender notwendig, daher orientieren sich die Gesamtkosten an der Anzahl der aufzurüstenden PCs. Hierbei ist jedoch zu beachten, dass sich das Qualitätskriterium in Form der Wiedergabequalität an den Anforderungen des Nutzers und nicht am technisch Möglichen orientieren sollte.
8.5.3 Softwarekosten
Um anspruchsvolle e-Learning-Applikationen zu betreiben, die in der Regel entweder als CD-ROM oder in Diskettenform erworben werden können, müssen je nach Anwenderanzahl und Funktionalität die entsprechenden Softwarelizenzen beschafft werden.

Bei Eigenentwicklungen, die sich in der Regel nur bei ganz speziellen unternehmensspezifischen CBT-Anwendungen für KMU rechnen, kommen dazu noch die Kosten für die Beschaffung der Entwicklungsumgebung in Form einer Rahmensoftware und die Entwicklungskosten hinzu.

8.5.4 Entwicklungskosten
Nach Shore beinhalten die Entwicklungskosten alle Kosten, von der Phase der Problemdefinition über den Entwicklungsprozess hinweg bis hin zu Dokumentation, Schulung und Einführung des Systems. [211]

Das Unternehmen hat mehrere Möglichkeiten sich mit der CBT-Technologie auseinanderzusetzen.

Einige Unternehmen beauftragen externe Berater, die dann Schulungsprogramme gemäß ihren Anforderungen entwickeln, wobei die dabei entstehenden Kosten stark vom Umfang der CBT-Anwendung abhängen.

Bei Eigenentwicklungen ohne die nötige Erfahrung können die nicht zu unterschätzenden Einarbeitungskosten (Discovery costs) zum dominanten Faktor bei den Entwicklungskosten werden. Einarbeitungskosten sind diejenigen Kosten, die zur Aneignung des Wissens, welches man für die Durchführung einer Entwicklung benötigt, entstehen. Einarbeitungskosten können sich in den Kategorien Benutzeranforderungen, relevante Entwicklungsparadigmen, Programmiersprachen und Softwareentwicklungsumgebungen ergeben. [212] Einen großen Kostenblock bei der Entwicklung von CBT-Programmen stellen die Personalkosten.

Auf die technische Abnahme folgt die Lernprogrammerprobung, die über einen Feldtest mit anschließender Evaluation die Wirksamkeit bei der Vermittlung des Lehrstoffes ermittelt. Erst danach erfolgt die Freigabe der Software. Auf die hier auftretenden Evaluierungskosten und weitere entwicklungsspezifische Kosten wird in dieser Arbeit nicht weiter eingegangen, da sie sehr stark unternehmensspezifisch sind.

Seufert führt auf, dass sich die hohen Entwicklungskosten bei steigender Teilnehmerzahl durch die Einsparung der Seminarkosten (Reise-, Hotel- und Verpflegungskosten) sowie der geringeren Ausfallkosten durch Lernen am Arbeitsplatz schnell amortisieren. [213], [214]
8.5.5 Betriebskosten

8.5.5.1 Erstellung des Schulungsmaterials

8.5.5.2 Schulungskosten

Reisekosten sowie Kosten für Unterbringung und Verpflegung sind ein weiterer ernstzunehmender Kostenblock bei externen Seminaren oder interner Weiterbildung an einem anderen Standort.

Der Einsatz von e-Learning senkt die Infrastrukturkosten, z.B. in Form von Raumkosten. Die Ressourcenknappheit an Schulungsräumen, Lehrkräften und Schulungszeiten kann durch Selbstlernphasen der Mitarbeiter überwunden werden, zusätzlich werden Dozenten entlastet und können sich Spezialaufgaben widmen. [217]

Ein nicht zu vernachlässigender, aber schwierig zu beziffernder Kostenblock sind die Opportunitätskosten, die durch Fehlentscheidungen entstehen.

Die vermehrte Nutzung von PC´s zu Schulungszwecken bringt es mit sich, dass sich die Lernenden vorab in Grundlagenschulungen zum PC-Umgang technische Kenntnisse aneignen müssen, was zusätzliche Kosten bei der Einführung von e-Learning verursacht.

Zu den reinen Anschaffungskosten müssen im Verlauf der Nutzung dann auch noch die Kosten für Wartung und einen zuverlässigen technischen Support für die neue Hard- und Software dazugerechnet werden, um Störungen und die damit verbundenen Stillstands- kostensorten zu vermeiden.
8.6 Kostenvergleich

Die Abschreibung der anfallenden Kosten hat kalkulatorisch über die Lebensdauer zu erfolgen. Die absolute Höhe der Kosten als Entscheidungskriterium im Variantenvergleich ist nur dann relevant, wenn diese bei der Umsetzung der gleichen Qualifikationsziele ebenbürtig sind. Ein vereinfachtes Kalkulationsschema ist in Tabelle 15 dargestellt.

Tabelle 15: Vereinfachtes Kalkulationsschema

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Modell 1 CBT</th>
<th>Modell 2 CBT/Seminar</th>
<th>Modell 3 Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaranteil (in h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBT-Anteil (in h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl der Teilnehmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entwicklungs-/Anschaffungskosten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware-Komponenten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software-Komponenten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebs-/Schulungskosten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten für Schulungsmaterial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reisekosten (Hotel- und Fahrtkosten)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausfallkosten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raummiete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten für Referenten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartungskosten Hard-/Software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opportunitätskosten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtkosten des Modells</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In der Literatur werden zahlreiche Kenngrößen benannt, auf deren Basis ein Kostenvergleich durchführbar ist. Kearsley [219] betrachtet die Kosten pro Teilnehmer, indem er auf ihnen alle anfallenden Kosten verrechnet und diese dann mit der Schulungszeit in Beziehung setzt. Seine Sichtweise ähnelt der Argumentation von Newing [220], der Trainingsstunden oder Trainingskosten pro Mitarbeiter betrachtet.
8.7 E-Learning versus traditionelles Lernen

Das Arbeiten mit CBT-Programmen als Lehr- und Lernhilfe hat Vor- und Nachteile, ist aber eine sinnvolle Unterstützung bei der Qualifizierung in KMU.

Vorteile:

Kosten:
Die Seminarzeit und die Abwesenheit durch Reisen lässt sich durch CBT deutlich reduzieren. Außerdem können unter Umständen Schulungsräume eingespart werden, weil die Arbeitnehmer am Arbeitsplatz oder zu Hause geschult werden. Das selektive Lernen ermöglicht die Nutzung von unproduktiven Zeiten, in denen kleine Learning Bites („Lernhäppchen“) vermittelt werden, sodass die Ausfallkosten deutlich verringert werden können. [221]

Flexibilität:
Die Mitarbeiter können jederzeit und mit individueller Geschwindigkeit die Inhalte lernen, die sie gerade benötigen und erreichen damit eine hohe Zielorientierung.

Lernerfolg:
Durch individuell zugeschnittenen Softwareeinsatz lassen sich unterschiedliche Vorkenntnisse der Mitarbeiter ausgleichen. Einzelne Kapitel können beliebig oft wiederholt werden. Die Berücksichtigung individueller Lernprozesse, die Individualisierung der Lerngeschwindigkeit und die Überwindung der Trennung zwischen Lernen und Anwendung des Gelernten kombiniert mit Interaktivität und der Möglichkeit relevante Inhalte auch in großen Datenmengen schnell auffinden zu können, kann zu beachtlichen Lernzuwächsen pro Zeiteinheit führen. [222]

Die anonymisierte Kommunikation in e-Learning-Umgebungen kann sozialkommunikative Barrieren überwinden und sichert auch den Lernerfolg für diejenigen Teilnehmer, die ansonsten aufgrund ihrer Zurückhaltung in Präsenzseminaren untergehen. [223]

Umsetzung:
Läuft das CBT-Programm am eigenen Arbeitsplatz, begünstigt dies die Integration des Gelernten in die betrieblichen Abläufe.
Wo Licht ist, ist auch Schatten. CBT hat eine Reihe von Nachteilen, die bei einem Einsatz bedacht werden sollten.

Nachteile:

Anfangsinvestitionen: Wenn die Infrastruktur noch nicht im Unternehmen vorhanden ist, sind größere Investitionen notwendig. Auch die Erstellung von CBT-Programmen ist ein gewichtiger Kostenfaktor.

Notwendige Ressourcen: Die Entwicklung von CBT-Unterrichtsmaterialien braucht neben Zeit auch ausgebildetes Personal.

Qualität: Nicht alle Lernprogramme entsprechen den didaktischen Mindestanforderungen. Des Weiteren bestehen eingeschränkte Möglichkeiten auf spezielle Fragen zu antworten.

Aktualität: Inhalte sind häufig nicht auf dem neuesten Stand, da die Aktualisierung der Lerninhalte vielfach noch über CD-Rom läuft.

9 Resümee und Ausblick

Im Rahmen der Spezifizierung der Problemstellung und Zielsetzung der Arbeit kristallisierten sich folgende Themenstellungen für diese Dissertation heraus:

1. Analyse von allgemeinen und automobilspezifischen Teilmanagementsystemen

Alle beschriebenen Normen/Konzepte für die entsprechenden Teilmanagementsysteme verfolgen im Wesentlichen ein Hauptziel - das Handeln der Organisation den Bedürfnissen des Marktes und damit des Kunden anzupassen.

2. Möglichkeiten einer Integration von Teilmanagementsystemen

Aufbauend auf den Ergebnissen der Analysen wurden Grundgedanken und Ziele einer Integration formuliert und Antworten zu folgenden Fragen erarbeitet:

- Was soll integriert werden?
 Integration der einzelnen Teilsysteme Qualität, Umwelt und Arbeitsschutz/Sicherheit
- Warum soll integriert werden?
- Wie soll integriert werden?
 Nach einem Vergleich der Teilmanagementsysteme, der die Basis für eine Integration bildet, wurden mögliche Konzepte der Zusammenführung von Teilsystemen (summa-
rische, adaptive und prozessorientierte Integration) vorgestellt und Zielkonflikte der Integrationsmodelle analysiert.

Aus den gewonnenen Erkenntnissen erfolgte abschließend die Entwicklung einer automobilspesifischen Synopse als Basis für ein zertifizierungsfähiges IMS mit vordergründig technischem Bezug und Konzentration auf die validierten Teilmanagementsysteme Qualität, Umwelt und Arbeitsschutz/-Sicherheit, die sich im Anhang dieser Arbeit befinden.

3. Entwicklung einer strukturoptimierten Qualitätstechnik zur Wissensgenerierung

4. Schulung durch innovative, prozessintegrierte und aufgabenspezifische Ansätze
Aufgrund normativer Forderung nach Schulung der Mitarbeiter und der oftmals wirtschaftlich angespannten Lage der Unternehmen, wurde im Rahmen dieser Arbeit die Nutzung multimedialer Techniken in Form eines CBT-Programmes unter wirtschaftlichen und didaktischen Gesichtspunkten analysiert, mit traditionellen Schulungsansätzen verglichen und hierfür ein Anwendungsprogramm entwickelt.

Ausblick
Betrachtet man abschließend die entwickelte branchenspezifische Synopse, die als Basis für ein innovatives und prozessorientiertes IMS dienen kann, so wird deutlich, dass es noch Potentiale für die Weiterentwicklung gibt.

Im Rahmen der Arbeit hat sich der Bedarf nach Fortführung dieser Thematik mit der verstärkten Orientierung auf rechnergestützte Arbeitsweisen zum integrierten, prozessorientierten, unternehmensweiten Informations- und Organisationsmanagementsystem herauskristallisiert, da eine zukünftige normenkonforme Dokumentation der verschiedenen Teilmanagementsysteme dadurch erleichtert werden könnte.

In Fortführung des Grundgedankens einer intranetfähigen Plattform für ein integriertes, prozessorientiertes, unternehmensweites Informations- und Organisationsmanagementsystem sollten die Belange des betrieblichen Vorschlagswesens und die Mitarbeiter Schulungen nicht separat betrachtet und behandelt werden, sondern in das Gesamtsystem implementiert werden.
Literaturverzeichnis

Kapitel 1

Kapitel 2

Kapitel 3

Kapitel 4

Verordnung (EG) Nr. 761/2001 […] über die freiwillige Beteiligung von Organisationen an einem Gemeinschaftssystem für das Umweltmanagement und die Umweltbetriebsprüfung.

Kapitel 5

Kapitel 6

Kapitel 7

Kapitel 8

[221] http://itgl.informatik.unibremen.de/veranstaltungen/drath/san2000/Wbt/Definition.html; Draht E.: "Internet und Schule"; Stand: 15.06.01.

Anhang

- Zertifizierungskosten für ausgewählte Managementsysteme
- Synopse - Qualitäts-, Umwelt- und Arbeitsschutz-/Sicherheits-managementsysteme für die Automobilindustrie
- Fragebogen zum betrieblichen Vorschlagswesen
Aufwand und Kosten für eine Erst-Zertifizierung nach DIN EN ISO 9001:2000

<table>
<thead>
<tr>
<th>Mitarbeiter im Unternehmen</th>
<th>Audittage Erstaudit</th>
<th>Audittage Überwachungs-audit</th>
<th>Kosten Erstaudit pro Tag</th>
<th>Kosten U-Audit pro Tag</th>
<th>Gebühr pro Jahr</th>
<th>Kosten für die ersten 3 Jahre pro Jahr</th>
<th>Kosten für die ersten 3 Jahre gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 10</td>
<td>2</td>
<td>0,7</td>
<td>2.000 €</td>
<td>667 €</td>
<td>500 €</td>
<td>1.611 €</td>
<td>4.833 €</td>
</tr>
<tr>
<td>11 - 25</td>
<td>3</td>
<td>1,0</td>
<td>3.000 €</td>
<td>1.000 €</td>
<td>500 €</td>
<td>2.167 €</td>
<td>6.500 €</td>
</tr>
<tr>
<td>26 - 45</td>
<td>4</td>
<td>1,3</td>
<td>4.000 €</td>
<td>1.333 €</td>
<td>500 €</td>
<td>2.722 €</td>
<td>8.167 €</td>
</tr>
<tr>
<td>46 - 65</td>
<td>5</td>
<td>1,7</td>
<td>5.000 €</td>
<td>1.667 €</td>
<td>500 €</td>
<td>3.278 €</td>
<td>9.833 €</td>
</tr>
<tr>
<td>66 - 125</td>
<td>6</td>
<td>2,0</td>
<td>6.000 €</td>
<td>2.000 €</td>
<td>500 €</td>
<td>3.833 €</td>
<td>11.500 €</td>
</tr>
<tr>
<td>86 - 125</td>
<td>7</td>
<td>2,3</td>
<td>7.000 €</td>
<td>2.333 €</td>
<td>500 €</td>
<td>4.389 €</td>
<td>13.167 €</td>
</tr>
<tr>
<td>126 - 175</td>
<td>8</td>
<td>2,7</td>
<td>8.000 €</td>
<td>2.667 €</td>
<td>500 €</td>
<td>4.944 €</td>
<td>14.833 €</td>
</tr>
<tr>
<td>176 - 275</td>
<td>9</td>
<td>3,0</td>
<td>9.000 €</td>
<td>3.000 €</td>
<td>500 €</td>
<td>5.500 €</td>
<td>16.500 €</td>
</tr>
<tr>
<td>276 - 425</td>
<td>10</td>
<td>3,3</td>
<td>10.000 €</td>
<td>3.333 €</td>
<td>500 €</td>
<td>6.056 €</td>
<td>18.167 €</td>
</tr>
<tr>
<td>426 - 625</td>
<td>11</td>
<td>3,7</td>
<td>11.000 €</td>
<td>3.667 €</td>
<td>500 €</td>
<td>6.611 €</td>
<td>19.833 €</td>
</tr>
<tr>
<td>626 - 875</td>
<td>12</td>
<td>4,0</td>
<td>12.000 €</td>
<td>4.000 €</td>
<td>500 €</td>
<td>7.167 €</td>
<td>21.500 €</td>
</tr>
<tr>
<td>976 - 1175</td>
<td>13</td>
<td>4,3</td>
<td>13.000 €</td>
<td>4.333 €</td>
<td>500 €</td>
<td>7.722 €</td>
<td>23.167 €</td>
</tr>
<tr>
<td>1176 - 1550</td>
<td>14</td>
<td>4,7</td>
<td>14.000 €</td>
<td>4.667 €</td>
<td>500 €</td>
<td>8.278 €</td>
<td>24.833 €</td>
</tr>
<tr>
<td>1551 - 2025</td>
<td>15</td>
<td>5,0</td>
<td>15.000 €</td>
<td>5.000 €</td>
<td>500 €</td>
<td>8.833 €</td>
<td>26.500 €</td>
</tr>
<tr>
<td>2026 - 2675</td>
<td>16</td>
<td>5,3</td>
<td>16.000 €</td>
<td>5.333 €</td>
<td>500 €</td>
<td>9.389 €</td>
<td>28.167 €</td>
</tr>
<tr>
<td>2676 - 3450</td>
<td>17</td>
<td>5,7</td>
<td>17.000 €</td>
<td>5.667 €</td>
<td>500 €</td>
<td>9.944 €</td>
<td>29.833 €</td>
</tr>
<tr>
<td>3451 - 4350</td>
<td>18</td>
<td>6,0</td>
<td>18.000 €</td>
<td>6.000 €</td>
<td>500 €</td>
<td>10.500 €</td>
<td>31.500 €</td>
</tr>
<tr>
<td>4351 - 5450</td>
<td>19</td>
<td>6,3</td>
<td>19.000 €</td>
<td>6.333 €</td>
<td>500 €</td>
<td>11.056 €</td>
<td>33.167 €</td>
</tr>
<tr>
<td>5451 - 6800</td>
<td>20</td>
<td>6,7</td>
<td>20.000 €</td>
<td>6.667 €</td>
<td>500 €</td>
<td>11.611 €</td>
<td>34.833 €</td>
</tr>
<tr>
<td>6801 - 8500</td>
<td>21</td>
<td>7,0</td>
<td>21.000 €</td>
<td>7.000 €</td>
<td>500 €</td>
<td>12.167 €</td>
<td>36.500 €</td>
</tr>
<tr>
<td>8501 - 10700</td>
<td>22</td>
<td>7,3</td>
<td>22.000 €</td>
<td>7.333 €</td>
<td>500 €</td>
<td>12.722 €</td>
<td>38.167 €</td>
</tr>
</tbody>
</table>

1 Audittag ("Manntag") = 8 Stunden
Von den angegebenen Audittagen muss der Auditor mindestens 90% vor Ort sein.

Aufwand und Kosten für eine Wiederholungs-Zertifizierung

<table>
<thead>
<tr>
<th>Audittage Wiederholungs-audit</th>
<th>Kosten W-Audit pro Tag</th>
<th>Kosten für die ersten 3 Jahre pro Jahr</th>
<th>Kosten für die ersten 3 Jahre gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>1.000 €</td>
<td>1.333 €</td>
<td>4.056 €</td>
</tr>
<tr>
<td>2/3</td>
<td>1.000 €</td>
<td>1.667 €</td>
<td>5.333 €</td>
</tr>
<tr>
<td>3/3</td>
<td>1.000 €</td>
<td>2.000 €</td>
<td>6.667 €</td>
</tr>
</tbody>
</table>

1.000 € Kosten pro Audittag ("Manntag"), exkl. Reisekosten

500 € Jahresgebühren: Zertifikatsgebühr, TGA-Gebühren, etc., nicht berücksichtigt sind evtl. einmalige Kosten, z.B. Nutzung des Logos
Aufwand und Kosten für eine Erst-Zertifizierung nach ISO/TS 16949:2002

<table>
<thead>
<tr>
<th>Mitarbeiter im Unternehmen</th>
<th>Audittage Erstaudit</th>
<th>Audittage Überwachungs-audit</th>
<th>Kosten Erstaudit pro Tag</th>
<th>Kosten Ü-Audit pro Tag</th>
<th>Gebühr pro Jahr</th>
<th>Kosten für die ersten 3 Jahre gesamt</th>
<th>Kosten für die nächsten 3 Jahre pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 15</td>
<td>2</td>
<td>2</td>
<td>2.000 €</td>
<td>2.000 €</td>
<td>500 €</td>
<td>2.500 €</td>
<td>7.500 €</td>
</tr>
<tr>
<td>16 - 30</td>
<td>4</td>
<td>2</td>
<td>4.000 €</td>
<td>2.000 €</td>
<td>500 €</td>
<td>3.167 €</td>
<td>9.500 €</td>
</tr>
<tr>
<td>31 - 60</td>
<td>5</td>
<td>3</td>
<td>5.000 €</td>
<td>3.000 €</td>
<td>500 €</td>
<td>4.167 €</td>
<td>12.500 €</td>
</tr>
<tr>
<td>61 - 100</td>
<td>6</td>
<td>3</td>
<td>6.000 €</td>
<td>3.000 €</td>
<td>500 €</td>
<td>4.500 €</td>
<td>13.500 €</td>
</tr>
<tr>
<td>101 - 250</td>
<td>8</td>
<td>4</td>
<td>8.000 €</td>
<td>4.000 €</td>
<td>500 €</td>
<td>5.833 €</td>
<td>17.500 €</td>
</tr>
<tr>
<td>251 - 500</td>
<td>10</td>
<td>5</td>
<td>10.000 €</td>
<td>5.000 €</td>
<td>500 €</td>
<td>7.167 €</td>
<td>21.500 €</td>
</tr>
<tr>
<td>501 - 1000</td>
<td>12</td>
<td>6</td>
<td>12.000 €</td>
<td>6.000 €</td>
<td>500 €</td>
<td>8.500 €</td>
<td>25.500 €</td>
</tr>
<tr>
<td>1001 - 2000</td>
<td>15</td>
<td>7</td>
<td>15.000 €</td>
<td>7.000 €</td>
<td>500 €</td>
<td>10.167 €</td>
<td>30.500 €</td>
</tr>
<tr>
<td>2001 - 4000</td>
<td>18</td>
<td>9</td>
<td>18.000 €</td>
<td>9.000 €</td>
<td>500 €</td>
<td>12.500 €</td>
<td>37.500 €</td>
</tr>
<tr>
<td>4001 - XXXXX</td>
<td>21</td>
<td>11</td>
<td>21.000 €</td>
<td>11.000 €</td>
<td>500 €</td>
<td>14.833 €</td>
<td>44.500 €</td>
</tr>
</tbody>
</table>

1 Audittag ("Manntag") = 8 Stunden
Die Angaben beziehen sich auf Vor-Ort-Audittage ohne Voraudit und/oder Dokumentationsbewertung.

Aufwand und Kosten für eine Wiederholungs-Zertifizierung

<table>
<thead>
<tr>
<th>Audittage Wiederholungs-audit</th>
<th>Kosten W-Audit pro Tag</th>
<th>Kosten für die nächsten 3 Jahre pro Jahr</th>
<th>Kosten für die ersten 3 Jahre gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000 €</td>
<td>2.000 €</td>
<td>2.500 €</td>
<td>7.500 €</td>
</tr>
<tr>
<td>2.000 €</td>
<td>3.000 €</td>
<td>3.500 €</td>
<td>10.500 €</td>
</tr>
<tr>
<td>3.000 €</td>
<td>4.000 €</td>
<td>4.333 €</td>
<td>11.500 €</td>
</tr>
<tr>
<td>4.000 €</td>
<td>5.000 €</td>
<td>5.167 €</td>
<td>12.500 €</td>
</tr>
<tr>
<td>5.000 €</td>
<td>6.000 €</td>
<td>6.167 €</td>
<td>13.500 €</td>
</tr>
<tr>
<td>6.000 €</td>
<td>7.000 €</td>
<td>7.167 €</td>
<td>14.500 €</td>
</tr>
<tr>
<td>7.000 €</td>
<td>8.000 €</td>
<td>8.167 €</td>
<td>15.500 €</td>
</tr>
<tr>
<td>8.000 €</td>
<td>9.000 €</td>
<td>9.167 €</td>
<td>16.500 €</td>
</tr>
<tr>
<td>9.000 €</td>
<td>10.000 €</td>
<td>10.167 €</td>
<td>17.500 €</td>
</tr>
<tr>
<td>10.000 €</td>
<td>11.000 €</td>
<td>11.167 €</td>
<td>18.500 €</td>
</tr>
<tr>
<td>11.000 €</td>
<td>12.000 €</td>
<td>12.167 €</td>
<td>19.500 €</td>
</tr>
<tr>
<td>12.000 €</td>
<td>13.000 €</td>
<td>13.167 €</td>
<td>20.500 €</td>
</tr>
</tbody>
</table>

1.000 € Kosten pro Audittag ("Manntag"), exkl. Reisekosten

500 € Jahresgebühren: Zertifikatsgebühr, etc., nicht berücksichtigt sind evtl. einmalige Kosten, z.B. Nutzung des Logos
<table>
<thead>
<tr>
<th>Mitarbeiter im Unternehmen</th>
<th>Audittage Erstaudit</th>
<th>Audittage Überwachungsaudit</th>
<th>Kosten Erstaudit pro Tag</th>
<th>Kosten Ü-Audit pro Tag</th>
<th>Gebühr pro Jahr</th>
<th>Kosten für die ersten 3 Jahre pro Jahr</th>
<th>Kosten für die ersten 3 Jahre gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 20</td>
<td>3</td>
<td>1.0</td>
<td>3.000€</td>
<td>1.000€</td>
<td>500€</td>
<td>2.167€</td>
<td>6.500€</td>
</tr>
<tr>
<td>21 - 100</td>
<td>5</td>
<td>1.5</td>
<td>5.000€</td>
<td>1.500€</td>
<td>500€</td>
<td>3.167€</td>
<td>9.500€</td>
</tr>
<tr>
<td>101 - 500</td>
<td>7</td>
<td>2.0</td>
<td>7.000€</td>
<td>2.000€</td>
<td>500€</td>
<td>4.167€</td>
<td>12.500€</td>
</tr>
<tr>
<td>501 - 2000</td>
<td>10</td>
<td>3.0</td>
<td>10.000€</td>
<td>3.000€</td>
<td>500€</td>
<td>5.833€</td>
<td>17.500€</td>
</tr>
<tr>
<td>2001 - 10000</td>
<td>14</td>
<td>4.5</td>
<td>14.000€</td>
<td>4.500€</td>
<td>500€</td>
<td>8.167€</td>
<td>24.500€</td>
</tr>
<tr>
<td>10000 - XXXXX</td>
<td>15</td>
<td>5.0</td>
<td>15.000€</td>
<td>5.000€</td>
<td>500€</td>
<td>8.833€</td>
<td>26.500€</td>
</tr>
</tbody>
</table>

1 Audittag ("Manntag") = 8 Stunden

<table>
<thead>
<tr>
<th>Mitarbeiter im Unternehmen</th>
<th>Kosten W-Audit pro Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000€</td>
<td></td>
</tr>
</tbody>
</table>

1.000 € Kosten pro Audittag ("Manntag"), exkl. Reisekosten

500 € Jahresgebühren: Zertifikatsgebühr, TGA-Gebühren, etc., nicht berücksichtigt sind evtl. einmalige Kosten, z.B. Nutzung des Logos
Synopse

kursiv: Elemente, die über die DIN EN ISO 9001:2000 hinausgehen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Einleitung</td>
<td>0 Einleitung</td>
<td>Vorwort</td>
<td>Foreword (Vorwort)</td>
<td></td>
</tr>
<tr>
<td>0.1 Allgemeines</td>
<td>0.1 Allgemeines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 Prozessorientierter Ansatz</td>
<td>0.2 Prozessorientierter Ansatz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 Beziehung zu ISO 9004</td>
<td>0.3 Beziehung zu ISO 9004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3.1 IATF Leitfaden zur ISO/TS 16949:2002</td>
<td>0.3.1 IATF Leitfaden zur ISO/TS 16949:2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4 Verträglichkeit mit anderen Managementsystemen</td>
<td>0.4 Verträglichkeit mit anderen Managementsystemen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Anwendungsbereich</td>
<td>1 Anwendungsbereich</td>
<td>1 Anwendungsbereich</td>
<td>1 Scope (Anwendungsbereich)</td>
<td></td>
</tr>
<tr>
<td>1.1 Allgemeines</td>
<td>1.1 Allgemeines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Anwendung</td>
<td>1.2 Anwendung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Normative Verweisungen</td>
<td>2 Normative Verweisungen</td>
<td>2 Reference publications (Normative Verweisungen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Begriffe</td>
<td>3 Begriffe</td>
<td>3 Begriffe</td>
<td>3 Terms and definitions (Begriffe und Definitio nen)</td>
<td></td>
</tr>
<tr>
<td>4 Qualitätsmanagement</td>
<td>4 Qualitätsmanagement</td>
<td>4 Forderungen an ein Umweltmanagementsystem</td>
<td>4 QH&S management system elements (QH&S Managementssystem-Elemente)</td>
<td></td>
</tr>
<tr>
<td>4.1 Allgemeine Anforderungen</td>
<td>4.1 Allgemeine Anforderungen</td>
<td>4.1 Allgemeine Anforderungen</td>
<td>4.1 Allgemeine Forderungen</td>
<td>4.1 General requirements (Allgemeine Forderungen)</td>
</tr>
<tr>
<td>4.2 Dokumentationsanforderungen</td>
<td>4.2 Dokumentationsanforderungen</td>
<td>4.2.1 Allgemeines</td>
<td>4.1 Allgemeine Anforderungen</td>
<td>4.2.1 Allgemeine Anforderungen - Ergänzung</td>
</tr>
<tr>
<td>4.2.1 Allgemeines</td>
<td>4.2.1 Allgemeines</td>
<td>4.2.1 Allgemeines - Ergänzung</td>
<td>4.1 Allgemeine Anforderungen</td>
<td>4.2.1 Allgemeine Anforderungen - Ergänzung</td>
</tr>
<tr>
<td>4.2.2 Qualitätsmanagement-handbuch</td>
<td>4.2.2 Qualitätsmanagement-handbuch</td>
<td>4.2.2 Allgemeine Anforderungen - Ergänzung</td>
<td>4.1 Allgemeine Anforderungen</td>
<td>4.2.2 Qualitätsmanagement-handbuch</td>
</tr>
<tr>
<td>4.2.3 Lenkung von Dokumenten</td>
<td>4.2.3 Lenkung von Dokumenten</td>
<td>4.2.3 Lenkung von Dokumenten</td>
<td>4.1 Allgemeine Anforderungen</td>
<td>4.2.3 Lenkung von Dokumenten</td>
</tr>
<tr>
<td>4.2.3.1 Technische Vorgaben</td>
<td>4.2.3.1 Technische Vorgaben</td>
<td>4.2.3.1 Technische Vorgaben</td>
<td>4.1 Allgemeine Anforderungen</td>
<td>4.2.3.1 Technische Vorgaben</td>
</tr>
<tr>
<td>4.2.4 Lenkung von Aufzeichnungen</td>
<td>4.2.4 Lenkung von Aufzeichnungen</td>
<td>4.2.4 Lenkung von Aufzeichnungen</td>
<td>4.1 Allgemeine Anforderungen</td>
<td>4.2.4 Lenkung von Aufzeichnungen</td>
</tr>
<tr>
<td>4.2.4.1 Aufbewahrung von Aufzeichnungen</td>
<td>4.2.4.1 Aufbewahrung von Aufzeichnungen</td>
<td>4.2.4.1 Aufbewahrung von Aufzeichnungen</td>
<td>4.1 Allgemeine Anforderungen</td>
<td>4.2.4.1 Aufbewahrung von Aufzeichnungen</td>
</tr>
</tbody>
</table>

Für die Zwecke dieser internationalen Norm gelten die Begriffe (Benennungen und Definitionen) nach DIN EN ISO 9000:2000.

Für die DIN EN ISO 9001:1994 gelten die in DIN EN ISO 8402:1991 angegebenen und die folgenden Begriffe:
- Produkt
- Angebot
- Vertrag

Für die DIN EN ISO 9001:1994 gelten die in DIN EN ISO 8402:1991 angegebenen und die folgenden Begriffe:
- Produkt
- Angebot
- Vertrag

Für die DIN EN ISO 9001:1994 gelten die in DIN EN ISO 8402:1991 angegebenen und die folgenden Begriffe:
- Produkt
- Angebot
- Vertrag

Für die DIN EN ISO 9001:1994 gelten die in DIN EN ISO 8402:1991 angegebenen und die folgenden Begriffe:
- Produkt
- Angebot
- Vertrag

Für die DIN EN ISO 9001:1994 gelten die in DIN EN ISO 8402:1991 angegebenen und die folgenden Begriffe:
- Produkt
- Angebot
- Vertrag

Für die DIN EN ISO 9001:1994 gelten die in DIN EN ISO 8402:1991 angegebenen und die folgenden Begriffe:
- Produkt
- Angebot
- Vertrag
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Verantwortung der Leitung</td>
<td>5 Verantwortung der Leitung</td>
<td>01 Verantwortung der Leitung</td>
<td>4.4.1 Organisationsstruktur und Verantwortlichkeit</td>
<td>4.4.1 Structure and responsibility (Organisationsstruktur und Verantwortlichkeit)</td>
</tr>
<tr>
<td>5.1 Verpflichtung der Leitung</td>
<td>5.1 Verpflichtung der Leitung</td>
<td>01.1, 01.2, 01.3, 01.4, 06.1 Verantwortung der Leitung, Produkt sicherheit</td>
<td>4.2 Umweltpolitik</td>
<td>4.2 OH&S policy (OH&S Politik)</td>
</tr>
<tr>
<td>5.1.1 Effizienz von Prozessen</td>
<td></td>
<td></td>
<td>4.4.1 Organisationsstruktur und Verantwortlichkeit</td>
<td>4.4.1 Structure and responsibility (Organisationsstruktur und Verantwortlichkeit)</td>
</tr>
<tr>
<td>5.2 Kundenorientierung</td>
<td>5.2 Kundenorientierung</td>
<td>Z1.4, 07.1 Verfahren für Kundenzufriedenheitsmessung, Vertragsprüfung, Q im Marketing</td>
<td>4.3.1 Umweltaspekte</td>
<td>4.3.1 Planning for hazard identification, risk assessment and risk control (Planung für Gefahrerkennung, Risikobeurteilung und Risikokontrolle)</td>
</tr>
<tr>
<td>5.3 Qualitätspolitik</td>
<td>5.3 Qualitätspolitik</td>
<td>01.1, 01.2 Qualitätspolitik</td>
<td>4.2 Umweltpolitik</td>
<td>4.2 OH&S policy (OH&S Politik)</td>
</tr>
<tr>
<td>5.4 Planung</td>
<td>5.4 Planung</td>
<td>02.5, 02.6 Qualitätplanung</td>
<td>4.3 Planung</td>
<td>4.3 Planning (Planung)</td>
</tr>
<tr>
<td>5.4.1 Qualitätsziele</td>
<td>5.4.1 Qualitätsziele</td>
<td>01.1, 01.2 Qualitätspolitik und -ziele</td>
<td>4.3.3 Zielsetzung und Einzelziele</td>
<td>4.3.3 Objectives</td>
</tr>
<tr>
<td>5.4.1.1 Qualitätsziele - Ergänzung</td>
<td></td>
<td>01.2, Z1.1 Qualitätsziele, Geschäftsplan über Kosten, Vertrieb, Qualität u.a.</td>
<td>4.2 OH&S policy (OH&S Politik)</td>
<td></td>
</tr>
<tr>
<td>5.4.2 Planung des Qualitäts managementsystems</td>
<td>5.4.2 Planung des Qualitätsmanagementsystems</td>
<td>02.5, 02.6 Qualitätsplanung, Qualitätsmanagementpläne</td>
<td>4.3.4 Umweltmanagementsprogramme(s)</td>
<td>4.3.4 OH&S management programme(s) (OH&S - Managementprogramm(e))</td>
</tr>
<tr>
<td>5.5 Verantwortung, Befugnisse und Kommunikation</td>
<td>5.5 Verantwortung, Befugnisse und Kommunikation</td>
<td>02.1 QM-System in einem QMH</td>
<td>4.1 Allgemeine Forderungen</td>
<td>4.1 General requirements (Allgemeine Forderungen)</td>
</tr>
<tr>
<td>5.5.1 Verantwortung und Befugnisse</td>
<td>5.5.1 Verantwortung und Befugnisse</td>
<td>02.3 Verantwortung und Befugnisse</td>
<td>4.4.1 Organisationsstruktur und Verantwortlichkeit</td>
<td>4.4.1 Structure and responsibility (Organisationsstruktur und Verantwortlichkeit)</td>
</tr>
<tr>
<td>5.5.1.1 Verantwortung für Qualität</td>
<td></td>
<td>02.3, 18.1 Verantwortung und Befugnisse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.2 Beauftragter der obersten Leitung</td>
<td>5.5.2 Beauftragter der obersten Leitung</td>
<td>01.5 Beauftragter der obersten Leitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.2.1 Beauftragter für Kunden</td>
<td></td>
<td>07.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.3 Interne Kommunikation</td>
<td>5.5.3 Interne Kommunikation</td>
<td>04.7 Interne Kommunikation</td>
<td>4.4.3 Kommunikation</td>
<td>4.4.3 Consultation and communication (Beratung und Kommunikation)</td>
</tr>
<tr>
<td>5.6 Managementbewertung</td>
<td>5.6 Managementbewertung</td>
<td>01.6 Managementbewertung</td>
<td>4.6 Bewertung durch die oberste Leitung</td>
<td>4.6 Managementreview (Managementbewertung)</td>
</tr>
<tr>
<td>5.6.1 Allgemeines</td>
<td>5.6.1 Allgemeines</td>
<td>01.6, 05.6 Managementbewertung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.1.1 Leistung des Qualitätsmanagementsystems</td>
<td></td>
<td>01.6 Managementbewertung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.2 Eingaben für die Bewertung</td>
<td>5.6.2 Eingaben für die Bewertung</td>
<td>01.6, 05.6 Managementbewertung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.2.1 Eingaben für die Bewertung - Ergänzung</td>
<td></td>
<td>01.6, 05.1, Z1.1, Z1.4 Managementbewertung, finanzielle Berichterstattung über Wirksamkeit QMS, strategischer Geschäftsplan, Verfahren zur Kundenzufriedenheitsmessung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.3 Ergebnisse der Bewertung</td>
<td>5.6.3 Ergebnisse der Bewertung</td>
<td>01.6, 05.6, 16.1 Managementbewertung, Zuständigkeit für Korrekturmaßnahmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Management der Ressourcen</td>
<td>6 Management der Ressourcen</td>
<td>01.4 Bereitstellung von Ressourcen</td>
<td>4.4.1 Organisationsstruktur und Verantwortlichkeit</td>
<td>4.4.1 Structure and responsibility (Organisationsstruktur und Verantwortlichkeit)</td>
</tr>
<tr>
<td>6.1 Bereitstellung von Ressourcen</td>
<td>6.1 Bereitstellung von Ressourcen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2 Personelle Ressourcen</td>
<td>6.2 Personelle Ressourcen</td>
<td>04 Schulung, Personal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2.1 Allgemeines</td>
<td>6.2.1 Allgemeines</td>
<td>01.4, 04.1 Bereitstellung von Ressourcen, Schulungsbedarf feststellen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>6.2.2 Fähigkeit, Bewusstsein und Schulung</td>
<td>6.2.2 Fähigkeit, Bewusstsein und Schulung</td>
<td>04.1 - 04.6, Z1.5 Fähigkeit, Bewusstsein und Schulung Mitarbeiterzufriedenheit</td>
<td>4.4.2 Schulung, Bewusstsein und Kompetenz</td>
<td>4.4.2 Training, awareness and competence (Schulung, Bewusstsein und Kompetenz)</td>
</tr>
<tr>
<td>6.2.2.1 Fähigkeiten der Produktentwicklung</td>
<td>6.2.2.1 Fähigkeiten der Produktentwicklung</td>
<td>02.6, 04.5, 09.3 QM-Pläne, Mitarbeiterqualifikation, Prozessplanung-entwicklung</td>
<td>4.3.6 Qualification of personnel and competence (Qualifikation des Personals und Kompetenz)</td>
<td>4.3.6 Qualification of personnel and competence (Qualifikation des Personals und Kompetenz)</td>
</tr>
<tr>
<td>6.2.2.2 Schulung</td>
<td>6.2.2.2 Schulung</td>
<td>04.1, 04.3 Schulung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2.2.3 Ausbildung am Arbeitsplatz</td>
<td>6.2.2.3 Ausbildung am Arbeitsplatz</td>
<td>04.4, 04.6, Z1.5 Schulung, Mitarbeitermotivation, Mitarbeiterzufriedenheit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2.2.4 Mitarbeitermotivation und Übertragung von Beurteilungen</td>
<td>6.2.2.4 Mitarbeitermotivation und Übertragung von Beurteilungen</td>
<td>04.6, Z1.5 Mitarbeitermotivation, Mitarbeiterzufriedenheit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3 Infrastruktur</td>
<td>6.3 Infrastruktur</td>
<td>01.4, 14.4, 14.6 QMS-Mittel für Personal- und Sachkosten, Instandhaltung und Wartung, Infrastruktur</td>
<td>4.4.1 Organisationsstruktur und Verantwortlichkeit</td>
<td>4.4.1 Structure and responsibility (Organisationsstruktur und Verantwortlichkeit)</td>
</tr>
<tr>
<td>6.3.1 Werks-, Anlagen- und Einrichtungsplanung</td>
<td>6.3.1 Werks-, Anlagen- und Einrichtungsplanung</td>
<td>01.3, 03.4, 09.4, 09.5 kontinuierliche Verbesserung, Produkt- und Prozessaudit, Q-Bewertung, Freigabe von Prozess- und Verfahrensabläufen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3.2 Notfallpläne</td>
<td>6.3.2 Notfallpläne</td>
<td>14.2 Fertigungsfreigabe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4 Arbeitsumgebung</td>
<td>6.4 Arbeitsumgebung</td>
<td>14.6 Arbeitsumgebung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4.1 Arbeitssicherheit zur Erreichung der Produktqualität</td>
<td>6.4.1 Arbeitssicherheit zur Erreichung der Produktqualität</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4.2 Sauberkeit der Betriebsstätten</td>
<td>6.4.2 Sauberkeit der Betriebsstätten</td>
<td>03.4, 14.6 Produkt- und Prozessaudit, Arbeitsumgebung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Produktrealisierung</td>
<td>7 Produktrealisierung</td>
<td>02.5, 02.6, 06.1, 09.1, 11.6, 15.1, 15.2, 15.4 Planung der Produktrealisierung</td>
<td>4.4 Implementierung und Durchführung</td>
<td>4.4 Implementation and operation (Implementierung und Durchführung)</td>
</tr>
<tr>
<td>7.1 Planung der Produktrealisierung</td>
<td>7.1 Planung der Produktrealisierung</td>
<td>02.4 - 02.6 Planung der Produktrealisierung</td>
<td>4.4.6 Ablaufkennung</td>
<td>4.4.6 Operational control (Ablaufkennung)</td>
</tr>
<tr>
<td>7.1.1 Planung der Produktrealisierung - Ergänzung</td>
<td>7.1.1 Planung der Produktrealisierung - Ergänzung</td>
<td>02.4 - 02.6 Planung der Produktrealisierung</td>
<td>4.4.6 Ablaufkennung</td>
<td>4.4.6 Operational control (Ablaufkennung)</td>
</tr>
<tr>
<td>7.1.2 Annahmekriterien</td>
<td>7.1.2 Annahmekriterien</td>
<td>09.2, 15.2 Arbeitsanweisungen, Prüfpläne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1.3 Lässigkeit</td>
<td>7.1.3 Lässigkeit</td>
<td>02.4 Projektmanagement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1.4 Lenkung von Änderungen</td>
<td>7.1.4 Lenkung von Änderungen</td>
<td>02.5, 14.2 Q-Planung, Fertigungsfreigabe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2 Kundenbezogene Prozesse</td>
<td>7.2 Kundenbezogene Prozesse</td>
<td>07 Produkt und Prozess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.1 Ermittlung der Anforderungen in Bezug auf das Produkt</td>
<td>7.2.1 Ermittlung der Anforderungen in Bezug auf das Produkt</td>
<td>06.2, 07.3, 07.5 Dokumentationspflichtige Produkte, Marketingfunktion, Lasten-/Pflichtenheft</td>
<td>4.3.1 Umweltaspekte</td>
<td>4.3.1 Planning for hazard identification, risk assessment and risk control (Planung für Gefahrerkennung, Risikobeurteilung und Risikokontrolle)</td>
</tr>
<tr>
<td>7.2.1.1 Vom Kunden festgelegte besondere Merkmale</td>
<td>7.2.1.1 Vom Kunden festgelegte besondere Merkmale</td>
<td>14.2, 14.3 Fertigungsfreigabe, Steuerung relevanter Prozessparameter</td>
<td>4.3.2 Gesetzliche und andere Forderungen</td>
<td>4.3.2 Legal and other requirements (Gesetzliche und andere Forderungen)</td>
</tr>
<tr>
<td>7.2.2 Bewertung der Anforderungen in Bezug auf das Produkt</td>
<td>7.2.2 Bewertung der Anforderungen in Bezug auf das Produkt</td>
<td>07.2, 07.5 Vertragsprüfung, Lasten-/Pflichtenheft bekannt</td>
<td>4.4.6 Operational control (Ablaufkennung)</td>
<td>4.4.6 Operational control (Ablaufkennung)</td>
</tr>
<tr>
<td>7.2.2.1 Bewertung der Anforderungen in Bezug auf das Produkt - Ergänzung</td>
<td>7.2.2.1 Bewertung der Anforderungen in Bezug auf das Produkt - Ergänzung</td>
<td>09.3 Q-Forderungen vollständig berücksichtigt</td>
<td>4.3.1 Umweltaspekte</td>
<td>4.3.1 Planning for hazard identification, risk assessment and risk control (Planung für Gefahrerkennung, Risikobeurteilung und Risikokontrolle)</td>
</tr>
<tr>
<td>7.2.2.2 Bewertung der Herstellbarkeit</td>
<td>7.2.2.2 Bewertung der Herstellbarkeit</td>
<td>09.3 Q-Forderungen vollständig berücksichtigt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3 Kommunikation mit den Kunden</td>
<td>7.2.3 Kommunikation mit den Kunden</td>
<td>07.4 Q-Forderungen des Kunden</td>
<td>4.4.3 Kommunikation</td>
<td>4.4.3 Consultation and communication (Beratung und Kommunikation)</td>
</tr>
<tr>
<td>7.2.3.1 Kommunikation mit den Kunden - Ergänzung</td>
<td>7.2.3.1 Kommunikation mit den Kunden - Ergänzung</td>
<td>02.4, 09.3, 19.6 Projektmanagement, Q-Forderungen vollständig berücksichtigt, Liefertreue</td>
<td>4.4.6 Operational control (Ablaufkennung)</td>
<td>4.4.6 Operational control (Ablaufkennung)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>7.3 Entwicklung</td>
<td>7.3 Entwicklung</td>
<td>08, 09</td>
<td>Designlenkung, Prozessplanung/-entwicklung</td>
<td>4.4.6 Ablauflenkung</td>
</tr>
<tr>
<td>7.3.1 Entwicklungsplanung</td>
<td>7.3.1 Entwicklungsplanung</td>
<td>02, 04, 08, 09, 2</td>
<td>Entwicklungsplanung</td>
<td></td>
</tr>
<tr>
<td>7.3.1.1 Bereichsübergreifender Ansatz</td>
<td>7.3.1.1 Bereichsübergreifender Ansatz</td>
<td>02, 05, 09, 5</td>
<td>Q-Planung, Prozessplanung</td>
<td></td>
</tr>
<tr>
<td>7.3.2 Entwicklungseingaben</td>
<td>7.3.2 Entwicklungseingaben</td>
<td>08, 09, 7</td>
<td>Designlenkung, Prozessplanung/-entwicklung</td>
<td></td>
</tr>
<tr>
<td>7.3.2.1 Eingaben für Produktentwicklung</td>
<td>7.3.2.1 Eingaben für Produktentwicklung</td>
<td>08, 09, 7</td>
<td>Q-Bewertung, Weitergabe von Entwicklungserfahrungen</td>
<td></td>
</tr>
<tr>
<td>7.3.2.2 Eingaben für die Produktionsprozessentwicklung</td>
<td>7.3.2.2 Eingaben für die Produktionsprozessentwicklung</td>
<td>09, 3</td>
<td>Q-Forderungen berücksichtigt</td>
<td></td>
</tr>
<tr>
<td>7.3.2.3 Besondere Merkmale</td>
<td>7.3.2.3 Besondere Merkmale</td>
<td>09, 4, 15, 1</td>
<td>Q-Bewertung, QM-Prüfpläne</td>
<td></td>
</tr>
<tr>
<td>7.3.3 Entwicklungsergebnisse</td>
<td>7.3.3 Entwicklungsergebnisse</td>
<td>08, 09, 7</td>
<td>Designlenkung, Prozessplanung/-entwicklung</td>
<td></td>
</tr>
<tr>
<td>7.3.3.1 Ergebnisse der Produktentwicklung - Ergänzung</td>
<td>7.3.3.1 Ergebnisse der Produktentwicklung - Ergänzung</td>
<td>02, 09, 2</td>
<td>QMS, Designlenkung</td>
<td></td>
</tr>
<tr>
<td>7.3.3.2 Ergebnisse der Produktionsprozessentwicklung</td>
<td>7.3.3.2 Ergebnisse der Produktionsprozessentwicklung</td>
<td>09, 6</td>
<td>Ergebnisse der Produktionsprozessentwicklung</td>
<td></td>
</tr>
<tr>
<td>7.3.4 Entwicklungsbewertung</td>
<td>7.3.4 Entwicklungsbewertung</td>
<td>08, 09, 7</td>
<td>Designlenkung, Prozessplanung/-entwicklung</td>
<td></td>
</tr>
<tr>
<td>7.3.4.1 Überwachung</td>
<td>7.3.4.1 Überwachung</td>
<td>02, 05, 09, 7</td>
<td>Q-Planung, Methoden der Berichterstattung, Q-Bewertung</td>
<td></td>
</tr>
<tr>
<td>7.3.5 Entwicklungsverifizierung</td>
<td>7.3.5 Entwicklungsverifizierung</td>
<td>08, 09, 7</td>
<td>Entwicklungsverifizierung</td>
<td></td>
</tr>
<tr>
<td>7.3.6 Entwicklungvalidierung</td>
<td>7.3.6 Entwicklungvalidierung</td>
<td>08, 09, 7</td>
<td>Entwicklungvalidierung</td>
<td></td>
</tr>
<tr>
<td>7.3.6.1 Entwicklungvalidierung - Ergänzung</td>
<td>7.3.6.1 Entwicklungvalidierung - Ergänzung</td>
<td>02, 09, 1</td>
<td>Q-Planung, Produktentwicklungsplan</td>
<td></td>
</tr>
<tr>
<td>7.3.6.2 Prototypenprogramm</td>
<td>7.3.6.2 Prototypenprogramm</td>
<td>02, 09, 1, 08, 14, 2</td>
<td>Q-Planung, Produktentwicklungsplan, Q-Bewertung, Freigabe</td>
<td></td>
</tr>
<tr>
<td>7.3.6.3 Produktionsprozess- und Produktfreigabe</td>
<td>7.3.6.3 Produktionsprozess- und Produktfreigabe</td>
<td>09, 3, 09, 1, 11, 3, 14, 2</td>
<td>Produktionsprozess- und Produktfreigabe</td>
<td></td>
</tr>
<tr>
<td>7.3.7 Lenkung von Entwicklungsländerungen</td>
<td>7.3.7 Lenkung von Entwicklungsländerungen</td>
<td>08, 09, 7, 09, 1, 09, 6</td>
<td>Designlenkung, Prozessplanung/-entwicklung</td>
<td></td>
</tr>
<tr>
<td>7.4 Beschaffung</td>
<td>7.4 Beschaffung</td>
<td>11</td>
<td>Beschaffung</td>
<td>4.4.6 Ablauflenkung</td>
</tr>
<tr>
<td>7.4.1 Beschaffungsprozess</td>
<td>7.4.1 Beschaffungsprozess</td>
<td>11, 1 - 11, 6</td>
<td>Beschaffungsprozess</td>
<td></td>
</tr>
<tr>
<td>7.4.1.1 Erfüllung behördlicher Vorschriften</td>
<td>7.4.1.1 Erfüllung behördlicher Vorschriften</td>
<td>08, 11, 1</td>
<td>Q-Forderungen berücksichtigt</td>
<td></td>
</tr>
<tr>
<td>7.4.1.2 Entwicklung des QM-Systems von Lieferanten</td>
<td>7.4.1.2 Entwicklung des QM-Systems von Lieferanten</td>
<td>11, 6</td>
<td>Eingangsprüfung</td>
<td></td>
</tr>
<tr>
<td>7.4.1.3 Vom Kunden freigegebene Bezugsquellen</td>
<td>7.4.1.3 Vom Kunden freigegebene Bezugsquellen</td>
<td>11, 2, 11, 3</td>
<td>Lieferantenauswahl, Musterprüfung</td>
<td></td>
</tr>
<tr>
<td>7.4.2 Beschaffungsabgaben</td>
<td>7.4.2 Beschaffungsabgaben</td>
<td>11, 1</td>
<td>Bestellunterlagen,</td>
<td></td>
</tr>
<tr>
<td>7.4.3 Verifizierung von beschafften Produkten</td>
<td>7.4.3 Verifizierung von beschafften Produkten</td>
<td>11, 1, 11, 5</td>
<td>Bestellunterlagen, Vereinbarungen über Q-Prüfungen</td>
<td></td>
</tr>
<tr>
<td>7.4.3.1 Anlieferqualität</td>
<td>7.4.3.1 Anlieferqualität</td>
<td>11, 5, 15, 3, 22, 3</td>
<td>Anlieferqualität</td>
<td></td>
</tr>
<tr>
<td>7.4.3.2 Lieferantenüberwachung</td>
<td>7.4.3.2 Lieferantenüberwachung</td>
<td>11, 4, 11, 6</td>
<td>Lieferanten-Qualitätsleistung, Eingangsprüfung</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>7.5 Produktion und Dienstleistungserbringung</td>
<td>7.5 Produktion und Dienstleistungserbringung</td>
<td></td>
<td>4.4.6 Ablauflenkung</td>
<td>4.4.6 Operational control (Ablauflenkung)</td>
</tr>
<tr>
<td>7.5.1 Lenkung der Produktion und der Dienstleistungs-erbringung</td>
<td>7.5.1 Lenkung der Produktion und der Dienstleistungs-erbringung</td>
<td>09.2, 09.3, 13.2, 13.4, 13.5, 14.4, 21.4, 21.5</td>
<td>Lenkung der Produktion und Dienstleistungserbringung</td>
<td></td>
</tr>
<tr>
<td>7.5.1.1 Produktionslenkungsplan</td>
<td>7.5.1.1 Produktionslenkungsplan</td>
<td>02.6, 09.2, 09.3, 09.6, 10.3</td>
<td>Produktionslenkungsplan</td>
<td></td>
</tr>
<tr>
<td>7.5.1.2 Arbeitsanweisungen</td>
<td>7.5.1.2 Arbeitsanweisungen</td>
<td>09.2, 09.6, 14.2</td>
<td>Arbeitsanweisungen, Fertigungsfreigabe</td>
<td></td>
</tr>
<tr>
<td>7.5.1.3 Verifizierung von Einrichtvorgängen</td>
<td>7.5.1.3 Verifizierung von Einrichtvorgängen</td>
<td>13.7, 14.1</td>
<td>Fertigungsfreigabe, Maschinen-/Prozessfähigkeitsuntersuchungen</td>
<td></td>
</tr>
<tr>
<td>7.5.1.4 Vorbeugende und vorausschauende Instandhaltung</td>
<td>7.5.1.4 Vorbeugende und vorausschauende Instandhaltung</td>
<td>14.4</td>
<td>Instandhaltung</td>
<td></td>
</tr>
<tr>
<td>7.5.1.5 Management von Produktionswerkzeugen</td>
<td>7.5.1.5 Management von Produktionswerkzeugen</td>
<td>01.4, 14.4</td>
<td>QMS für Kosten, Instandhaltung</td>
<td></td>
</tr>
<tr>
<td>7.5.1.6 Produktionsplanung</td>
<td>7.5.1.6 Produktionsplanung</td>
<td>14.2, 19.2</td>
<td>Fertigungsfreigabe, Kennzeichnungsprozess</td>
<td></td>
</tr>
<tr>
<td>7.5.1.7 Rückmeldungen aus dem Kundendienst</td>
<td>7.5.1.7 Rückmeldungen aus dem Kundendienst</td>
<td>21.4</td>
<td>Kundendienstinformation</td>
<td></td>
</tr>
<tr>
<td>7.5.1.8 Kundendienstvereinbarungen mit dem Kunden</td>
<td>7.5.1.8 Kundendienstvereinbarungen mit dem Kunden</td>
<td>21.5</td>
<td>Wartung</td>
<td></td>
</tr>
<tr>
<td>7.5.2 Validierung der Prozesse zur Produktion und Dienstleistungserbringung</td>
<td>7.5.2 Validierung der Prozesse zur Produktion und Dienstleistungserbringung</td>
<td>09.4, 09.5, 13.3, 13.5, 13.7, 14.1, 14.3, 14.7</td>
<td>Validierung der Prozesse zur Produktion und Dienstleistungserbringung</td>
<td></td>
</tr>
<tr>
<td>7.5.2.1 Validierung der Prozesse zur Produktion und zur Dienstleistungserbringung - Ergänzung</td>
<td>7.5.2.1 Validierung der Prozesse zur Produktion und zur Dienstleistungserbringung - Ergänzung</td>
<td>09.4, 09.5, 14.2</td>
<td>Validierung der Prozesse zur Produktion und Dienstleistungserbringung</td>
<td></td>
</tr>
<tr>
<td>7.5.3 Kennzeichnung und Rückverfolgbarkeit</td>
<td>7.5.3 Kennzeichnung und Rückverfolgbarkeit</td>
<td>11.6, 13.1, 13.6, 15.5</td>
<td>Kennzeichnung und Rückverfolgbarkeit</td>
<td></td>
</tr>
<tr>
<td>7.5.3.1 Kennzeichnung und Rückverfolgbarkeit - Ergänzung</td>
<td>7.5.3.1 Kennzeichnung und Rückverfolgbarkeit - Ergänzung</td>
<td>19.2</td>
<td>Verpackungs- und Kennzeichnungsprozess</td>
<td></td>
</tr>
<tr>
<td>7.5.4 Eigentum des Kunden</td>
<td>7.5.4 Eigentum des Kunden</td>
<td>12.1 - 12.4, 13.4</td>
<td>Lenkung der vom Kunden beigestellten Produkte, Betriebseinspeisung</td>
<td></td>
</tr>
<tr>
<td>7.5.4.1 Kundeneigene Werkzeuge</td>
<td>7.5.4.1 Kundeneigene Werkzeuge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5.5 Produktverhältnis</td>
<td>7.5.5 Produktverhältnis</td>
<td>14.6, 19.1 - 19.5</td>
<td>Umgebungsbedingungen, Lagerung</td>
<td></td>
</tr>
<tr>
<td>7.5.5.1 Lagerung und Lagerbestand</td>
<td>7.5.5.1 Lagerung und Lagerbestand</td>
<td>13.6, 19.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.6 Lenkung von Überwachungs- und Messmitteln</td>
<td>7.6 Lenkung von Überwachungs- und Messmitteln</td>
<td>13.4, 16.1</td>
<td>Lagerung und Überwachung/ Kalibrierung von Überwachungs- und Messmitteln</td>
<td></td>
</tr>
<tr>
<td>7.6.1 Beurteilung von Messsystemen</td>
<td>7.6.1 Beurteilung von Messsystemen</td>
<td>16.4</td>
<td>Prüfmittelkennung</td>
<td></td>
</tr>
<tr>
<td>7.6.2 Aufzeichnungen der Kalibrierung und Verifizierung</td>
<td>7.6.2 Aufzeichnungen der Kalibrierung und Verifizierung</td>
<td>16.1, 16.6</td>
<td>Überwachungs- und Kalibrierungssystem</td>
<td></td>
</tr>
<tr>
<td>7.6.3 Anforderungen an Prüflaboratorien</td>
<td>7.6.3 Anforderungen an Prüflaboratorien</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.6.3.1 Interne Laboratorien</td>
<td>7.6.3.1 Interne Laboratorien</td>
<td>15.6</td>
<td>Periodische Prüfungen</td>
<td></td>
</tr>
<tr>
<td>7.6.3.2 Externe Laboratorien</td>
<td>7.6.3.2 Externe Laboratorien</td>
<td>15.1, 16.2</td>
<td>Prüfläufe</td>
<td></td>
</tr>
<tr>
<td>8 Messung, Analyse und Verbesserung</td>
<td>8 Messung, Analyse und Verbesserung</td>
<td></td>
<td>4.5 Kontroll- und Korrekturmaßnahmen</td>
<td>4.5 Checking and corrective action (Kontroll-und Korrekturmaßnahmen)</td>
</tr>
<tr>
<td>8.1 Allgemeines</td>
<td>8.1 Allgemeines</td>
<td>11.6, 15.2, 15.4, 22.1</td>
<td>Eingangsprüfung, Prüfläufe, Methodenplanung</td>
<td></td>
</tr>
<tr>
<td>8.1.1 Festlegung statistischer Methoden</td>
<td>8.1.1 Festlegung statistischer Methoden</td>
<td>22.1</td>
<td>Methodenplanung</td>
<td></td>
</tr>
<tr>
<td>8.1.2 Kenntnis statistischer Grundbegriffe</td>
<td>8.1.2 Kenntnis statistischer Grundbegriffe</td>
<td>04.5</td>
<td>Qualifikation</td>
<td></td>
</tr>
<tr>
<td>8.2 Überwachung und Messung</td>
<td>8.2 Überwachung und Messung</td>
<td>21.4</td>
<td>Überwachung und Messung</td>
<td></td>
</tr>
<tr>
<td>8.2.1 Kundenzufriedenheit</td>
<td>8.2.1 Kundenzufriedenheit</td>
<td>21.4</td>
<td>Überwachung und Messung</td>
<td></td>
</tr>
<tr>
<td>8.2.1.1 Kundenzufriedenheit - Ergänzung</td>
<td>8.2.1.1 Kundenzufriedenheit - Ergänzung</td>
<td>21.4, 04.7</td>
<td>Überwachung und Messung, Darstellung von Qualität</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>8.2.2 Internes Audit</td>
<td>8.2.2 Internes Audit</td>
<td>03.1 - 03.3 Internes Audit</td>
<td>4.5.4 Umweltmanagement-system-Audit</td>
<td>4.5.4 Audit</td>
</tr>
<tr>
<td>8.2.2.1 QM-Systemsaudit</td>
<td>8.2.2.1 QM-Systemsaudit</td>
<td>03.2 Internes Audit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2.2.2 Prozessaudit</td>
<td>8.2.2.2 Prozessaudit</td>
<td>03.4 Produkt- und Prozessaudit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2.2.3 Produktaudit</td>
<td>8.2.2.3 Produktaudit</td>
<td>03.4 Produkt- und Prozessaudit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2.2.4 Interne Auditpläne</td>
<td>8.2.2.4 Interne Auditpläne</td>
<td>03.2 Internes Audit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2.2.5 Qualifikation interner Auditoren</td>
<td>8.2.2.5 Qualifikation interner Auditoren</td>
<td>03.1 Qualifikation interner Auditoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2.3 Überwachung und Messung von Prozessen</td>
<td>8.2.3 Überwachung und Messung von Prozessen</td>
<td>03.4, 14.1, 14.3, 22.2 - 22.6 Überwachung und Messung von Prozessen</td>
<td>4.5.1 Überwachung und Messung</td>
<td>4.5.1 Performance measurement and monitoring (Leistungsmessung und Überwachung)</td>
</tr>
<tr>
<td>8.2.3.1 Überwachung und Messung von Produktionsprozessen</td>
<td>8.2.3.1 Überwachung und Messung von Produktionsprozessen</td>
<td>09.2, 09.3, 09.6, 09.7, 14.1 - 14.3, 15.1, 15.4 Überwachung und Messung von Produktionsprozessen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2.4 Überwachung und Messung des Produkts</td>
<td>8.2.4 Überwachung und Messung des Produkts</td>
<td>03.4, 15.3, 15.4 - 15.6, 22.2 - 22.6 Überwachung und Messung des Produkts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2.4.1 Requalifikationsprüfung</td>
<td>8.2.4.1 Requalifikationsprüfung</td>
<td>11.5, 15.6 Vereinbarungen Q-Prüfung, periodische Prüfungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3 Lenkung fehlerhafter Produkte</td>
<td>8.3 Lenkung fehlerhafter Produkte</td>
<td>17.1 - 17.4 Lenkung fehlerhafter Produkte</td>
<td>4.5.2 Abweichungen, Korrekturn- und Vorsorgemaßnahmen</td>
<td>4.5.2 Accidents, incidents, non-conformances and corrective and preventive action (Unfälle, Ereignisse, Abweichungen, Korrektur- und Vorsorgemaßnahmen)</td>
</tr>
<tr>
<td>8.3.1 Lenkung fehlerhafter Produkte - Ergänzung</td>
<td>8.3.1 Lenkung fehlerhafter Produkte - Ergänzung</td>
<td>17.1 Lenkung fehlerhafter Produkte</td>
<td>4.4.7 Notfallversorgung und -maßnahmen</td>
<td>4.4.7 Emergency preparedness and response (Notfallversorgung und -maßnahmen)</td>
</tr>
<tr>
<td>8.3.2 Lenkung von nachgearbeiteten Produkten</td>
<td>8.3.2 Lenkung von nachgearbeiteten Produkten</td>
<td>17.3 Durchführung von Korrekturmaßnahmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3.3 Kundeninformationen</td>
<td>8.3.3 Kundeninformationen</td>
<td>17.1, 21.3 Lenkung fehlerhafter Produkte, Feldausfallanalyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3.4 Sonderfreigaben des Kunden</td>
<td>8.3.4 Sonderfreigaben des Kunden</td>
<td>13.5, 14.2, 17.2 Q-Forderungen, Fertigungs-freigabe, Sonderfreigabe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4 Datenanalyse</td>
<td>8.4 Datenanalyse</td>
<td>21.2, 21.3, 22.2 - 22.6 Datenanalyse</td>
<td>4.5.1 Überwachung und Messung</td>
<td>4.5.1 Performance measurement and monitoring (Leistungsmessung und Überwachung)</td>
</tr>
<tr>
<td>8.4.1 Analyse und Verwendung von Daten</td>
<td>8.4.1 Analyse und Verwendung von Daten</td>
<td>04.7, Z1.2, Z1.3 Analyse und Verwendung von Daten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5 Verbesserung</td>
<td>8.5 Verbesserung</td>
<td>01.3, Z1.2, Z1.3 Einheitliche Verbesserung</td>
<td>4.2 Umweltpolitik</td>
<td>4.2 OHS & Policy (OHS & Politik)</td>
</tr>
<tr>
<td>8.5.1 Ständige Verbesserung</td>
<td>8.5.1 Ständige Verbesserung</td>
<td>01.3, Z1.2, 18.1 Einheitliche Verbesserung</td>
<td>4.3.4 Umweltmanagement-programme(s)</td>
<td>4.3.4 OHS management programme(s)</td>
</tr>
<tr>
<td>8.5.1.1 Ständige Verbesserung der Organisation</td>
<td>8.5.1.1 Ständige Verbesserung der Organisation</td>
<td>01.3, 04.2 Einheitliche Verbesserung, Fortbildung in Q-Techniken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5.1.2 Verbesserung des Produktionsprozesses</td>
<td>8.5.1.2 Verbesserung des Produktionsprozesses</td>
<td>01.3 Einheitliche Verbesserung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5.2 Korrekturmaßnahmen</td>
<td>8.5.2 Korrekturmaßnahmen</td>
<td>18.1 - 18.4, 21.3 Korrektur-/Vorbeugungsmaßnahmen, Feldausfallanalyse</td>
<td>4.5.2 Abweichungen, Korrekturn- und Vorsorgemaßnahmen</td>
<td>4.5.2 Accidents, incidents, non-conformances and corrective and preventive action (Unfälle, Ereignisse, Abweichungen, Korrektur- und Vorsorgemaßnahmen)</td>
</tr>
<tr>
<td>8.5.2.1 Problemlösungsmethoden</td>
<td>8.5.2.1 Problemlösungsmethoden</td>
<td>18.3 Fehlerursachenanalyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5.2.2 Fehlervermeidung</td>
<td>8.5.2.2 Fehlervermeidung</td>
<td>18.3 Fehlerursachenanalyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5.2.3 Auswirkungen von Korrekturmaßnahmen</td>
<td>8.5.2.3 Auswirkungen von Korrekturmaßnahmen</td>
<td>18.3 Fehlerursachenanalyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5.2.4 Befundung reklamierter Produkte</td>
<td>8.5.2.4 Befundung reklamierter Produkte</td>
<td>18.3, 18.4 Fehlerursachenanalyse, Vermeidung von Wiederholfehlern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5.3 Vorbeugungsmaßnahmen</td>
<td>8.5.3 Vorbeugungsmaßnahmen</td>
<td>18.4 Vermeidung von Wiederholfehlern</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anhang A
- Zusammenhänge zwischen ISO 14001 und ISO 9001 (Annex A)

Anhang B
- Literaturenweise Bibliography (Literaturhinweise)

Literaturhinweise
- A.2 Elemente des Produktionslenkungsplans (Control Plan) (Anhang A)
- Anleitung zur Anwendung der Spezifikation (OHSAS 18002)
Fragebogen zum betrieblichen Vorschlagswesen
Befragung von Mitarbeiterinnen und Mitarbeitern des Unternehmens ..

1. Geschlecht: ○ Männlich ○ Weiblich

3. Betriebszugehörigkeit seit:
 ○ <1 Jahr ○ 1-3 Jahre ○ 3-5 Jahre ○ >5 Jahre

4. Ist Ihnen das betriebliche Vorschlagswesen bekannt? ○ Ja ○ Nein

5. Haben Sie schon einmal einen Verbesserungsvorschlag eingereicht?
 ○ Ja ○ Nein

6. Aus welchen Gründen können Sie sich persönlich vorstellen, einen Verbesserungsvorschlag einzureichen? (Sie können mehrere Antworten ankreuzen!)
 ○ Ich möchte Missstände/Fehler beheben und die Arbeit erleichtern.
 ○ Ich möchte kreativ mitarbeiten.
 ○ Ich möchte aktiv am Betriebsgeschehen teilnehmen.
 ○ Ich suche nach persönlicher Anerkennung im Unternehmen.
 ○ Ich hoffe auf eine ansprechende Geldprämie.
 ○ Sonstiges: ..
7. Warum reichen Sie keine beziehungsweise wenige Vorschläge ein? (Sie können mehrere Antworten ankreuzen!)

- Ich konzentriere mich ausschließlich auf meinen Arbeitsbereich.
- Ich bin unsicher darüber, was mein Vorgesetzter davon hält, wenn ich Verbesserungsvorschläge mache.
- Mir fehlt die Zeit, über Verbesserungsvorschläge nachzudenken.
- Die Unternehmensleitung motiviert mich nicht, über Verbesserungen nachzudenken.
- Ich finde, alles kann so bleiben wie es ist.
- Ich habe Angst vor der Reaktion der Mitarbeiter, wenn ich einen Vorschlag über ihren Arbeitsbereich einreiche.
- Die Prämien sind mir zu niedrig.
- Ich weiß nicht, welche Prämie ich bekommen kann, wenn ich einen Verbesserungsvorschlag einreiche.
- Ich habe Angst, dass ich oder andere Mitarbeiter ihren Arbeitsplatz verlieren.
- Ich möchte mich ungern in den Mittelpunkt stellen.
- Sonstiges: ...

8. Was müsste sich Ihrer Meinung nach verändern, damit Sie mehr Verbesserungsvorschläge einreichen? (Sie können mehrere Antworten ankreuzen!)

- Die Verwirklichung der Verbesserungsvorschläge müsste schneller gehen.
- Ich möchte wissen, nach welchem Verfahren die Gutachter die Verbesserungsvorschläge bewerten.
- Ich möchte zwischenzeitlich informiert werden über den laufenden Stand der Bearbeitung meines Verbesserungsvorschlages.
- Ich möchte wissen, warum manche Verbesserungsvorschläge nicht akzeptiert werden.
- Wenn ich einen Verbesserungsvorschlag einreiche, dann möchte ich auch dafür eine faire Prämie bekommen.
- Bei einem realisierten Verbesserungsvorschlag ist die Prämierung nicht nachvollziehbar.
- Es muss nichts verändert werden.
- Sonstiges: ...
9. Falls Sie sonstige Anmerkungen zum Betrieblichen Vorschlagswesen haben, können Sie diese hier notieren: